PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, computational, anticancerous and antiproliferative effects of some copper, manganese and zinc complexes with ligands derived from symmetrical 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Four new symmetrical Schiff bases derived from 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde have been synthesized and characterized by elemental analysis and different spectroscopic techniques. The reaction of 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl with two equivalents of 5-tert-butyl-, 3,5-dinitro-, 3,5-dibromo- and 3-tert-butyl-salicylaldehyde yielded 2,2’-bis(5-tert-butyl-salicylideneamino)-4,4’-dimethyl-1,1’-biphenyl (A1) as well as the 3,5-dinitro- (A2), 3,5-dibromo- (A3) and 3-tert-butyl- (A4) substituted derivatives. The tetradentate ligands were then reacted with copper-, manganese- and zinc-acetate producing the tetra-coordinate metal complexes which were characterized by FTIR, UV-Visible spectroscopy, magnetic susceptibility and elemental analysis. Zinc complexes were characterized by 1H-NMR spectroscopy. Density functional theory (DFT) calculations at the B3LYP/6-31G(d) level of theory were carried out to fully optimize and examine the molecular geometries of complexes. Subsequently, IR vibrational and UV-Vis absorption spectra were computed and correlated with the observed values and the results are in good agreement with the experimental data. The anticancerous and antiproliferative activity of the A3 ligand and its metal complexes were determined.
Rocznik
Strony
7--15
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wz.
Twórcy
  • Department of Chemistry Yarmouk University Irbid, Jordan
  • Chemistry Department Jordan University of Science and Technology Irbid, Jordan
  • Department of Chemistry Yarmouk University Irbid, Jordan
  • Department of Chemistry and Chemical Technology Tafila Technical University Tafila, Jordan
  • Department of Basic and Applied Sciences Zarqa University College, Al-Balqa Applied University Al-Salt, Jordan
  • Department of Chemistry Yarmouk University Irbid, Jordan
  • Department of Chemistry and Chemical Technology Tafila Technical University Tafila, Jordan
autor
  • Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy Applied Science Private University Amman, Jordan
  • Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy Applied Science Private University Amman, Jordan
Bibliografia
  • 1. Costes, J.P., Dahan, F., Fernandez, M.B.F., Garcia, M.I.F., Deibe, A.M.G. & Sanmartin, J. (1998). General synthesis of ‘salicylaldehyde half-unit complexes’: structural determination and use as synthon for the synthesis of dimetallic or trimetallic complexes and of ‘self-assembling ligand complexes’. Inorg. Chim. Acta. 274(1), 73–81. DOI: 10.1016/S0020-1693(97)05991-4.
  • 2. Dalia, S.F., Afsan, F., Hossain, M.S., Khan, M.N., Zakaria, C., Kudrat-E-Zahan, M. & Ali, M.H. (2018). A short review on chemistry of Schiff base metal complexes and their catalytic application. Int. J. Chem. Stud. 6(3), 2859–2866.
  • 3. Kumar, S., Dhar, D.N. & Saxena, P.N. (2009). Applications of metal complexes of Schiff bases-A review. J. Sci. Ind. Res. India. 68(3), 181–187.
  • 4. Nishinaga, A., Yamada, T., Fujisawa, H., Ishizaki, K., Ihara, H. & Matsuura, T. (1988) Catalysis of cobalt-Schiff base complexes in oxygenation of alkenes: on the mechanism of ketonization. J. Mol. Catal. 48, 249–264. DOI: 10.1016/0304-5102(88)85009-0.
  • 5. Sabaa, M.W., Mohamed, R.R. & Oraby, E.H. (2009). Vanillin–Schiff’s bases as organic thermal stabilizers and co--stabilizers for rigid poly(vinyl chloride). Eur. Polym. J. 45(11), 3072-3080. DOI: 10.1016/j.eurpolymj.2009.08.018.
  • 6. Tunçel, M. & Serin, S. (2006). Synthesis and characterization of new azo-linked Schiff bases and their cobalt(II), copper(II) and nickel(II) complexes. Transit. Met. Chem. 31, 805–812. DOI: 10.1007/s11243-006-0074-5.
  • 7. Pandeya, S.N., Sriram, D., Nath, G. & De Clercq, E. (1999). Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino--2-methylmercapto quinazolin-4(3H)-one. Pharm. Acta. Helv. 74(1), 11–17. DOI: 10.1016/s0031-6865(99)00010-2.
  • 8. Kelley, J.L., Linn, J.A., Bankston, D.D., Burchall, C.J., Soroko, F.E. & Cooper, B.R. (1995). 8-Amino-3-benzyl-1,2,4--triazolo[4,3-a]pyrazines. Synthesis and anticonvulsant activity. J. Med. Chem. 38(18), 3676–3679. DOI: 10.1021/jm00018a029.
  • 9. Pavan, F.R., Maia, P., Leite, S.R.A., Deflon, V.M., Batista, A.A., Sato, D.N., Franzblau, S.G. & Leite, C.Q.F. (2010). Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem. 45(5), 1898–1905. DOI: 10.1016/j.ejmech.2010.01.028.
  • 10. Upadhyay, K.K., Kumar, A., Upadhyay, S. & Mishra, P.C. (2008). Synthesis, characterization, structural optimization using density functional theory and superoxide ion scavenging activity of some Schiff bases. J. Mol. Struct. 873, 5–16. DOI: 10.1016/j.molstruc.2007.02.031.
  • 11. Dutta, B., Some, S. & Ray, J.K. (2006). Thermal cyclization of 3-arylamino-3-(2-nitrophenyl)-propenal Schiff base hydrochlorides followed by triethyl phosphite mediated deoxygenation: a facile synthesis of quindolines. Tetrahedron Lett. 47(3), 377–379. DOI: 10.1016/j.tetlet.2005.11.007.
  • 12. Chandramouli, Shivanand, M.R., Nayanbhai, T.B., Bheemachari & Udupi, R.H. (2012). Synthesis and biological screening of certain new triazole Schiff bases and their derivatives bearing substituted benzothiazole moiety. J. Chem. Pharm. Res. 4(2), 1151–1159.
  • 13. Chinnasamy, R.P., Sundararajan, R. & Govindaraj, S. (2010). Synthesis, characterization, and analgesic activity of novel Schiff base of isatin derivatives. J. Adv. Pharm. Tech. Res. 1(3), 342–347. DOI: 10.4103/0110-5558.72428.
  • 14. Chaubey, A.K. & Pandeya, S.N. (2012). Synthesis & anticonvulsant activity (chemo shock) of Schiff and Mannich bases of isatin derivatives with 2-amino pyridine (mechanism of action). Int. J. Pharmtech Res. 4(2), 590–598.
  • 15. Aboul-Fadl, T., Mohammed, F.A. & Hassan, E.A. (2003). Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1-alkylisatin and isonicotinic acid hydrazide (INH). Archiv. Pharm. Res. 26(10), 778–784. DOI: 10.1007/BF02980020.
  • 16. Miri, R., Razzaghi-asl, N. & Mohammadi, M.K. (2013). QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J. Mol. Mod. 19(2), 727–735. DOI: 10.1007/s00894-012-1586-x.
  • 17. Avaji, P.G., Kumar, C.H.V., Patil, S.A., Shivananda, K.N. & Nagaraju, C. (2009). Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazine. Eur. J. Med. Chem. 44(9), 3552–3559. DOI: 10.1016/j.ejmech.2009.03.032.
  • 18. Rao, S.N., Kathale, N., Rao, N.N. & Munshi, K.N. (2007). Catalytic air oxidation of olefins using molybdenum dioxo complexes with dissymmetric tridentate O,N,S-donor Schiff base ligands derived from o-hydroxyacetophenone and S-benzyldithiocarbazate or S-methyldithiocarbazate. Inorg. Chim. Acta. 360(14), 4010–4016. DOI: 10.1016/j.ica.2007.05.035.
  • 19. Iwakura, I., Ikeno, T. & Yamada, T. (2004). Proposal for the metallacycle pathway during the cyclopropanation catalyzed by cobalt−Schiff base complexes. Org. Lett. 6(6), 949–952. DOI: 10.1021/ol036505m.
  • 20. Nishinaga, A., Yamada, T., Fujisawa, H., Ishizaki, K., Ihara, H. & Matsuura, T. (1988). Catalysis of cobalt-Schiff base complexes in oxygenation of alkenes: on the mechanism of ketonization. J. Mol. Catal. 48, 249–264. DOI: 10.1016/0304-5102(88)85009-0.
  • 21. Al-Shboul, T.M.A., Ziemann, S., Görls, H., Jazzazi, T.M.A., Krieck, S. & Westerhausen, M. (2018). Synthesis of dipotassium 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl derivatives and use as ligand transfer reagent. Eur. J. Inorg. Chem. 2018(14), 1563–1570. DOI: 10.1002/ejic.201701472.
  • 22. Al-Shboul, T.M.A., Ziemann, S., Görls, H., Krieck, S. & Westerhausen, M. (2019). Substituted 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl complexes of zinc. Z. Anorg. Allg. Chem. 645(3), 292–300. DOI: 10.1002/zaac.201800404.
  • 23. Jazzazi, T.M.A., Ababneh, T.S. & Abboushi, E.K. (2019). Zinc(II) complexes of symmetrical tetradentate Schiff base ligands derived from 2,2’-diamino-6,6’-dibromo-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde: synthesis, characterization and computational study. Jordan J. Chem.14(2), 81–87.
  • 24. Carlin, R.B. & Foltz, G.E. (1956). Ullmann synthesis of six dimethyldinitrobiphenyls and their reduction to the corresponding diaminodimethylbiphenyls. J. Am. Chem. Soc. 78(9), 1997–2000. DOI: 10.1021/ja01590a065.
  • 25. Spartan’18 Wavefunction. Inc. Irvine, CA.
  • 26. Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652. DOI: 10.1063/1.464913.
  • 27. Becke, A.D. (1996). Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104(3), 1040–1046. DOI: 10.1063/1.470829.
  • 28. Lee, C., Yang, W. & Parr, RG. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37(2), 785–789. DOI: 10.1103/PhysRevB.37.785.
  • 29. Petersson, G.A., Bennett, A., Tensfeldt, T.G., Al-Laham, M.A & Shirley, W.A. (1988). A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89(4), 2193–2218. DOI: 10.1063/1.455064.
  • 30. Petersson, G.A., Tensfeldt, T.G. & Montgomery, J.A. (1991). A complete basis set model chemistry. III. The complete basis setquadratic configuration interaction family of methods. J. Chem. Phys. 94(9), 6091–6101. DOI: 10.1063/1.460448.
  • 31. Talib, W.H. (2017). Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm. 85(3), 27. DOI: 10.3390/scipharm85030027.
  • 32. Jayaseelan, P., Prasad, S., Vedanayaki, S. & Rajavel, R. (2016). Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes. Arab. J. Chem. 9, 668–677. DOI: 10.1016/j.arabjc.2011.07.029.
  • 33. Yousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J. & Abdullah, B. (2017). Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arab. J. Chem. 10, 1639–1644. DOI: 10.1016/j.arabjc.2013.06.006.
  • 34. Thaker, B.T., Surati, K.R., Oswal, S., Jadeja, R.N. & Gupta, V.K. (2007). Synthesis, spectral, thermal and crystal-lographic investigations on oxovanadium(IV) and manganese(III) complexes derived from heterocyclic β-diketone and 2-amino ethanol. Struct. Chem. 18, 295–310. DOI: 10.1007/s11224-006-9134-x.
  • 35. Miessler, G. & Tarr, D. (2005). Inorganic Chemistry (3rd ed). New Jersey, USA: Pearson Prentice-Hall.
  • 36. Ababneh, T.S., Al-Shboul, T.M.A., Jazzazi, T.M.A., Alomari, M.I., Görls, H. & Westerhausen, M. (2020). Crystallo-graphic and computational study of the structure of copper(II) 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl. Transit. Met. Chem. 45. DOI: 10.1007/s11243-020-00395-8
  • 37. Cheeseman, T.P., Hall, D. & Waters, T.N. (1966). The colour isomerism and structure of some copper co-ordination compounds. Part XII. The crystal structure of NN′-(2,2′-biphenyl)bis(salicylaldiminato)copper(II). J. Chem. Soc. A 1396–1406. DOI: 10.1039/J19660001396.
  • 38. Taha, Z.A., Ajlouni, A.M., Ababneh, T.S., Al-Momani, W., Hijazi, A.K., Al Masri, M. & Hammad, H. (2017). DFT computational studies, biological and antioxidant activities, and kinetic of thermal decomposition of 1,10-phenanthroline lanthanide complexes. Struct. Chem. 28, 1907–1918. DOI: 10.1007/s11224-017-0975-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-395bb48d-75e1-4088-ac91-dc382cdb6ec0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.