PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comprehensive Monte Carlo study to design a novel multi-nanoparticle loaded nanocomposites for augmentation of attenuation coefficient in the energy range of diagnostic X-rays

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The present study aimed to investigate the radiation protection properties of silicon-based composites doped with nano-sized Bi2O3, PbO, Sm2O3, Gd2O3, WO3, and IrO2 particles. Radiation shielding properties of Sm2O3 and IrO2 nanoparticles were investigated for the first time in the current study. Material and methods: The MCNPX (2.7.0) Monte Carlo code was utilized to calculate the linear attenuation coefficients of single and multi-nano structured composites over the X-ray energy range of 10–140 keV. Homogenous distribution of spherical nanoparticles with a diameter of 100 nm in a silicon rubber matrix was simulated. The narrow beam geometry was used to calculate the photon flux after attenuation by designed nanocomposites. Results: Based on results obtained for single nanoparticle composites, three combinations of different nano-sized fillers Sm2O3+WO3+Bi2O3, Gd2O3+WO3+Bi2O3, and Sm2O3+WO3+PbO were selected, and their shielding properties were estimated. In the energy range of 20-60 keV Sm2O3 and Gd2O3 nanoparticles, in 70-100 keV energy range WO3 and for photons energy higher than 90 keV, PbO and Bi2O3 nanoparticles showed higher attenuation. Despite its higher density, IrO2 had lower attenuation compared to other nanocomposites. The results showed that the nanocomposite containing Sm2O3, WO3, and Bi2O3 nanoparticles provided better shielding among the studied samples. Conclusions: All studied multi-nanoparticle nanocomposites provided optimum shielding properties and almost 8% higher attenuation relative to single nano-based composites over a wide range of photon energy used in diagnostic radiology. Application of these new composites is recommended in radiation protection. Further experimental studies are suggested to validate our findings.
Rocznik
Strony
279--289
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Iran
  • Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Iran
  • Radio-oncology Department, Shahid Madani Hospital, Tabriz University of Medical Sciences, Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Iran
  • Radio-oncology Department, Shahid Madani Hospital, Tabriz University of Medical Sciences, Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Iran
Bibliografia
  • 1. Malekzadeh R, Mehnati P, Sooteh MY, Mesbahi A. Influence of the size of nano-and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology. Radiological Physics and Technology. 2019;12(3):325-334. https://doi.org/10.1007/s12194-019-00529-3
  • 2. Mesbahi A, Verdipoor K, Zolfagharpour F, Alemi A. Investigation of fast neutron shielding properties of new polyurethane-based composites loaded with B4C, BeO, WO3, ZnO, and Gd2O3 micro-and nanoparticles. Polish Journal of Medical Physics and Engineering. 2019;25(4):211-219. https://doi.org/10.2478/pjmpe-2019-0028
  • 3. Kim J, Uhm YR, Byungchul L, et al. Radiation shielding members including nanoparticles as a radiation shielding material and method for preparing the same. In: Google Patents; 2012.
  • 4. Sayyed M. Investigation of shielding parameters for smart polymers. Chinese Journal of Physics. 2016;54(3):408-415. https://doi.org/10.1016/j.cjph.2016.05.002
  • 5. Elmahroug Y, Tellili B, Souga C. Determination of shielding parameters for different types of resins. Annals of Nuclear Energy. 2014;63:619-623. https://doi.org/10.1016/j.anucene.2013.09.007
  • 6. Singh VP, Badiger N. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Physics and Chemistry. 2015;41(3):276-283. https://doi.org/10.1134/S1087659615030177
  • 7. Hassan H, Badran H, Aydarous A, Sharshar T. Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015;360:81-89. https://doi.org/10.1016/j.nimb.2015.07.126
  • 8. Movahedi MM, Abdi A, Mehdizadeh A, et al. Novel paint design based on nanopowder to protection against X and gamma rays. Indian Journal of Nuclear Medicine: IJNM: the official journal of the Society of Nuclear Medicine, India. 2014;29(1):18. https://doi.org/10.4103/0972-3919.125763
  • 9. Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology. 2012;5(2):47. https://doi.org/10.2478/v10102-012-0009-2
  • 10. McCaffrey J, Mainegra‐Hing E, Shen H. Optimizing non‐Pb radiation shielding materials using bilayers. Medical Physics. 2009;36(12):5586-5594. https://doi.org/10.1118/1.3260839
  • 11. AbuAlRoos NJ, Amin NAB, Zainon R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry. 2019;165:108439. https://doi.org/10.1016/j.radphyschem.2019.108439
  • 12. Dejangah M, Ghojavand M, Poursalehi R, Gholipour P. X-ray attenuation and mechanical properties of tungsten-silicone rubber nanocomposites. Materials Research Express. 2019;6(8):085045. https://doi.org/10.1088/2053-1591/ab1a89
  • 13. Toyen D, Rittirong A, Poltabtim W, Saenboonruang K. Flexible, lead-free, gamma-shielding materials based on natural rubber/metal oxide composites. Iranian Polymer Journal. 2018;27(1):33-41. https://doi.org/10.1007/s13726-017-0584-3
  • 14. Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. International Journal of Radiation Research. 2016;14(2):127. https://doi.org/10.18869/acadpub.ijrr.14.2.127
  • 15. Shik NA, Gholamzadeh L. X-ray shielding performance of the EPVC composites with micro-or nanoparticles of WO3, PbO or Bi2O3. Applied Radiation and Isotopes. 2018;139:61-65. https://doi.org/10.1016/j.apradiso.2018.03.025
  • 16. Kim J, Seo D, Lee BC, Seo YS, Miller WH. Nano‐W Dispersed Gamma Radiation Shielding Materials. Advanced engineering materials. 2014;16(9):1083-1089. https://doi.org/10.1002/adem.201400127
  • 17. Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A. Shielding characteristics of nanocomposites for protection against X-and gamma rays in medical applications: effect of particle size, photon energy and nanoparticle concentration. Radiation and Environmental Biophysics. 2020:1-18. https://doi.org/10.1007/s00411-020-00865-8
  • 18. Ma J, La LTB, Zaman I, et al. Fabrication, structure and properties of epoxy/metal nanocomposites. Macromolecular Materials and Engineering. 2011;296(5):465-474. https://doi.org/10.1002/mame.201000409
  • 19. La LB, Leatherday C, Qin P, et al. The interaction between encapsulated Gd2O3 particles and polymeric matrix: The mechanism of fracture and X-ray attenuation properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017;535:175-183. https://doi.org/10.1016/j.colsurfa.2017.09.038
  • 20. Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding. Radiation Physics and Chemistry. 2018;147:85-90. https://doi.org/10.1016/j.radphyschem.2018.02.017
  • 21. Wang P, Tang X, Chai H, Chen D, Qiu Y. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material. Fusion Engineering and Design. 2015;101:218-225. https://doi.org/10.1016/j.fusengdes.2015.09.007
  • 22. Hubbell JH, Seltzer SM. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. National Inst. of Standards and Technology-PL, Gaithersburg, MD (United States); 1995. https://doi.org/10.6028/NIST.IR.5632
  • 23. Gerward L, Guilbert N, Jensen KB, Levring H. WinXCom-a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry. 2004;71(3-4):653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  • 24. Yu D, Shu-Quan C, Hong-Xu Z, et al. Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chinese Physics Letters. 2012;29(10):108102. https://doi.org/10.1088/0256-307X/29/10/108102
  • 25. Nambiar S, Osei EK, Yeow JT. Polymer nanocomposite‐based shielding against diagnostic X‐rays. Journal of Applied Polymer Science. 2013;127(6):4939-4946. https://doi.org/10.1002/app.37980
  • 26. Atashi P, Rahmani S, Ahadi B, Rahmati A. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application. Journal of Materials Science: Materials in Electronics. 2018;29(14):12306-12322. https://doi.org/10.1007/s10854-018-9344-1
  • 27. Akbay İK, Güngör A, Özdemir T. Optimization of the vulcanization parameters for ethylene-propylene-diene termonomer (EPDM)/ground waste tyre composite using response surface methodology. Polymer Bulletin. 2017;74(12):5095-5109. https://doi.org/10.1007/s00289-017-2001-7
  • 28. Sonsilphong A, Wongkasem N. Light-weight radiation protection by non-lead materials in X-ray regimes. Paper presented at: 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA)2014. https://doi.org/10.1109/ICEAA.2014.6903939
  • 29. McCaffrey J, Shen H, Downton B, Mainegra‐Hing E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical Physics. 2007;34(2):530-537. https://doi.org/10.1118/1.2426404
  • 30. McCaffrey J, Tessier F, Shen H. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Medical Physics. 2012;39(7Part1):4537-4546. https://doi.org/10.1118/1.4730504
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-395a7918-740d-4e67-90f1-122ff0eac80f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.