PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Reinforcement of the TNT System by a Newly-designed GAP-based Polyurethane-Urea: a Molecular Simulation Investigation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A glycidyl azide (GAP)-based polyurethane-urea (PUU) modifier used in the 1,3,5-trinitrotoluene (TNT)-based composite explosive was investigated by molecular simulation. Inter-molecular interactions were investigated using quantum chemistry calculation on the dimer of TNT and GAP-PUU, and attractive forces were found between the two molecules. The cohesive energy densities and the solubility parameters were obtained through molecular dynamics simulations combined with thermodynamic calculations on the TNT and GAP-PUU amorphous cell models, and the miscibility of the modifier in molten TNT was predicted to be good. The interaction energies and the mechanical properties were then obtained by molecular simulations and mechanical calculations on the solid-phase models of the GAP-PUU with TNT along three crystalline directions, and an improvement in the mechanical properties was predicted.
Rocznik
Strony
411--426
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
autor
  • Southwest University of Science and Technology, Mianyang 621010, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
Bibliografia
  • [1] Akhavan J., The Chemistry of Explosives, The Royal Society of Chemistry, Cambridge, 2004, pp. 1-20, 118-148; ISBN 978-0-85404-640-9.
  • [2] Hsueh C.H., Becher P.F., Thermal Stresses Due to Thermal Expansion Anisotropy in Materials with Preferred Orientation, J. Mater. Sci. Lett., 1991, 19(10), 1165-1167.
  • [3] McGrane S.D., Grieco A., Ramos K.J., Hooks D.E., Moore D.S., Femtosecond Micromachining of Internal Voids in High Explosive Crystals for Studies of Hot Spot Initiation, J. Appl. Phys., 2009, 105(7), 7.
  • [4] Qian W., Zhang C.Y., Xiong Y., Zong H.H., Zhang W.B., Shu Y.J., Thermal Expansion of Explosive Molecular Crystal: Anisotropy and Molecular Stacking, Cent. Eur. J. Energ. Mater., 2014, 11(1), 569-580.
  • [5] Shu Y.J., Ma Q., Luo G., Wen M.P., Qian W., Zheng B.H., Cai Z.Z., Li H.R., Chen L., Mechanical Properties Study of Toughened and Modified Melt-Cast TNT Based Explosive Formulations for Anti-Cracks and Brittleness, New Trends Res. Energ. Mater., Proc. Semin., 16th, Pardubice, Czech Republic, 2013, 331-339.
  • [6] Voigt H.W., Stanhope R., Cast TNT Explosive Containing Polyurethane Elastomer which is Free from Oily Exudation and Voids and Uniformly Remeltable, US Patent 4012245, 1976.
  • [7] Stanton H.D., Reed R., Polymer Modified TNT Containing Explosives, US Patent 4445948, 1984.
  • [8] Willer R.L., Hartwell J.A., Gleeson R.G., High-energy Compositions Having Castable Thermoplastic Binders, US Patent 4889571, 1989.
  • [9] Ampleman G., Brousseau P., Insensitive Melt Cast Explosive Compositions Containing Energetic Thermoplastic Elastomers, US Patent 2002003016, 2002.
  • [10] Diaz E., Brousseau P., Ampleman G., Prud’homme R.E., Heats of Combustion and Formation of New Energetic Thermoplastic Elastomers Based on GAP, PolyNIMMO and PolyGLYN, Propellants Explos. Pyrotech., 2003, 28(3), 101-106.
  • [11] Herpburn C., Polyurethane Elastomers, (1st ed.), Applied Science Publishers, London, 1982; ISBN 978-1851665891.
  • [12] Hildebrand J.H., Solubility, J. Am. Chem. Soc., 1916, 38, 1452.
  • [13] Hildebrand J.H., Solubility III: Relative Values of Internal Pressures and Their Practical Application, J. Am. Chem. Soc., 1919, 41,1067.
  • [14] Scatchard G., Equilibria in Non-electrolyte Solutions in Relation to the Vapor Pressures and Densities of the Components, Chem. Rev., 1931, 8, 321.
  • [15] Hildebrand J.H., Prausnitz J.M., Scott R.L., Regular and Related Solutions: the Solubility of Gases, Liquids, and Solids, van Nostrand Reinhold Co., New York, 1970, ISBN 978-0442156657.
  • [16] Brandrup J., Immergut E.H., Polymer Handbook, 3rd ed., John Wiley and Sons Inc., New York, 1989, ISBN 978-0471479369.
  • [17] Watt J.P., Davies G.F., O’Connell R.J., The Elastic Properties of Composite Materials, Rev. Geophys. Space. Phys., 1976, 14, 541-563.
  • [18] Weiner J.H., Statistical Mechanics of Elasticity, John Wiley, New York, 1983, ISBN 978-0486422602.
  • [19] Materials Studio Release Notes, Release 6.1, Accelrys Software Inc., San Diego, 2012.
  • [20] Sun H., COMPASS: An ab Initio Force-Field Optimized for Condensed-phase Applications, J. Phys. Chem. B, 1998, 102(38), 7338-7364.
  • [21] Sun H., Rigby D., Development and Validation of COMPASS Force Field Parameters for Molecules with Aliphatic Azide Chains, J. Comp. Chem., 2004, 25(1), 61-71.
  • [22] Carper W.R., Davis L.P., Extine M.W., Extine M.W., Molecular Structure of 2,4,6-Trinitrotoluene, J. Phys. Chem., 1982, 86, 459.
  • [23] Perdew J.P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, 3865-3868.
  • [24] Delley B., a) An All-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys., 1990, 92, 508; b) From Molecules to Solids with the DMol3 Approach, J. Chem. Phys., 2000, 113, 7756.
  • [25] Li H.R., Shu Y.J., Gao S.J., Easy Methods to Study the Smart Energetic TNT/CL-20 Co-crystal, J. Mol. Model., 2013, 19(11), 4909-4917.
  • [26] Verlet L., Computer Experiments on Classical Fluids I: Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 1967, 159, 98-103.
  • [27] Ewald P.P., The Calculation of Optical and Electrostatic Lattice Potentials (in German), Ann. Phys. Leipzig., 1921, 64, 253.
  • [28] Karasawa N., Goddard W.A., Acceleration of Convergence for Lattice Sums, J. Phys. Chem., 1989, 93, 7320-7327.
  • [29] Andersen H.C., Molecular Dynamics Simulations at Constant Pressure and/or Temperature, J. Phys. Chem., 1980, 72, 2384.
  • [30] Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R., Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 1984, 81, 3684-3690.
  • [31] Qiu L., Xiao H.M., Molecular Dynamics Study of Binding Energies, Mechanical Properties, and Detonation Performances of Bicycle-HMX-based PBXs, J. Hazard. Mater., 2009, 164, 329-336.
  • [32] Beijer F.H., Kooijman H., Spek A.L., Sijbesma R.P., Meijer E.W., Selfcomplementarity Achieved through Quadruple Hydrogen Bonding, Angew. Chem., Int. Ed., 1998, 37, 75-78.
  • [33] McNaught A.D., Wilkinson A., IUPAC Compendium of Chemical Terminology, 2nd ed., Blackwell Scientific Publications, Oxford, 1997; ISBN 0-86542-684-8.
  • [34] Hunter C.A., Sanders J.K.M., The Nature of π-π Interactions, J. Am. Chem. Soc., 1990, 112(14), 5525-5534.
  • [35] Janiak C., A Critical Account on π-π Stacking in Metal Complexes with Aromatic Nitrogen-containing Ligands, J. Chem. Soc., Dalton Trans., 2000, 32(11), 3885- 3896.
  • [36] Zhang C.Y., Shape and Size Effects in π-π Interactions: Face-to-face Dimers, J. Comp. Chem., 2011, 32(1), 152-160.
  • [37] Hansen C.M., Hansen Solubility Parameters: a User’s Handbook, 2nd ed., CRC Press, Taylor & Francis Group, 2007; ISBN 978-0849372483.
  • [38] Pinto J., Wiegand D.A., Yield and Plastic Flow in Composition B and TNT, US Army, Technical Report ARAED-TR-92024, Picattiny Arsenal, 1993.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39599e22-b24c-4aca-b7c0-26e0a951aa28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.