PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A water quality model for the Czech part of the river Elbe

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low water quality is an enduring problem in water management and has global importance due to the increasing use of water by the world’s growing population. Based on climate change trends, the availability of water of acceptable quality will increasingly be a hot topic. The main objective of this work was the compilation and validation of a water quality model for the river Elbe (Czech: Labe) for the prediction of water quality under different scenarios (impact of point and nonpoint sources; effect of climate change). The assessment of water quality in the Elbe catchment is extremely important because the Elbe is one of the most important rivers in Europe. We focused on the water quality in the Czech part of the river Elbe, which was simulated and analysed with the QSim water quality simulation model. The model was applied from the Srnojedy weir to the Hrensko at the Czech-German border (river km 961 to km 726), comprising a cascade of 23 impoundments. Based on the measured input parameters for 2010-2015, the water residence time, oxygen conditions, and nutrients were simulated and validated. The model’s results strongly agree with the measured data from the monitored period. The proposed model can, therefore, be used to simulate the development of pollution or climate change effects in this watercourse, allowing for the prediction of water quality under different scenarios.
Rocznik
Strony
451--472
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Science, Department of Physical Geography and Geoecology, Charles University, Albertov 6, 128 43, Prague, Czech Republic
  • Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068, Koblenz, Germany
  • Faculty of Science, Department of Physical Geography and Geoecology, Charles University, Albertov 6, 128 43, Prague, Czech Republic
Bibliografia
  • [1] Becker A, Kirchesch V, Baumert HZ, Fischer H, Schol A. Modelling the effects of thermal stratification on the oxygen budget of an impounded river. Riv Res Appl. 2010;26(572)-88. DOI: 10.1002/rra.1260.
  • [2] Diamantini E, Lutz SR, Mallucci S, Majone B, Merz R, Bellin A. Driver detection of water quality trends in three large European river basins. Sci Total Environ. 2018;612:49-62. DOI: 10.1016/j.scitotenv.2017.08.172.
  • [3] Glendell M, Granger S, Bol R, Brazier R. Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma. 2014;214-215:25-41. DOI: 10.1016/j.geoderma.2013.10.008.
  • [4] Orr HG, Simpson GL, des Clers S, Watts G, Hughes M, Hannaford J, et al. Detecting changing river temperatures in England and Wales. Hydrol Process. 2015;29:752-66. DOI: 10.1002/hyp.10181.
  • [5] Laszewski M, Fedorczyk M, Stępniewski K. The impact of land cover on selected water quality parameters in Polish lowland streams during the non-vegetative period. Water. 2022;14:3295. DOI: 10.3390/w14203295.
  • [6] Velázquez-Chávez L. Anthropogenic impact on the quality of water and agricultural soil in Guadiana Valley, Durango, Mexico. Ecol Chem Eng S. 2023;30(3):373-86. DOI: 10.2478/eces-2023-0039.
  • [7] Fekrache F, Boudeffa K. Surface water contamination by mining wastes: case of the Sidi Kambar region (Skikda, north-east Algeria). Ecol Chem Eng S. 2023;30(1):49-61. DOI: 10.2478/eces-2023-0003.
  • [8] Novický O, Kašpárek L, Peláková M. Climate change impacts and responses in the Czech Republic and Europe. IAHS-AISH publication. 2016;308:418-23. Available from: https://iahs.info/uploads/dms/13697.77-418-423-82-308-Novicky.pdf.
  • [9] Langhammer J. Water quality changes in the Elbe River basin, Czech Republic, in the context of the post-socialist economic transition. GeoJournal. 2010;75(2):185-98. DOI: 10.1007/s10708-009-9292-7.
  • [10] Hübner G, Schwandt D. Extreme low flow and water quality - a long-term view on the river. Erdkunde. 2018;72(3):235-52. DOI: 10.3112/erdkunde.2018.03.05.
  • [11] Havlíková P, Mrkva L, Chuman T, Janský B. Surface water quality in the rural catchment of the Šlapanka River, Czechia: change over time. Environ Earth Sci. 2023;82:379. DOI: 10.1007/s12665-023-11067-y.
  • [12] Langhammer J, Kliment Z. Water quality changes in selected rural catchments in the Czech Republic. Ekologia Bratislava. 2009;28(3):312-32. DOI: 10.4149/ekol_2009_03_312.
  • [13] Mrkva L, Janský B. Surface water quality in the Mastnik stream catchment area: The situation in the Czech countryside. Geografie. 2018;123(4):479-505. DOI: 10.37040/geografie2018123040479.
  • [14] Mrkva L, Janský B, Šobr M. Eutrophication of the Mastník bay of the Slapy Reservoir, Czechia. AUC Geographica. 2021;56(1):65-78. DOI: 10.14712/23361980.2021.2.
  • [15] Fonseca A, Botelho C, Boaventura R, Vilar V. Integrated hydrological and water quality model for river management: A case study on Lena River. Sci Total Environ. 2014;485-486:474-89. DOI: 10.1016/j.scitotenv.2014.03.111.
  • [16] Qinggai W, Shibei L, Peng J, Changjun Q, Feng D. A review of surface water quality models. Sci World J. 2013;2013:231768. DOI: 10.1155/2013/231768.
  • [17] Haag I. A basic water quality model for the River Neckar: Part 2 - Model-based analysis of the oxygen budget and scenarios. Acta Hydrochim Hydrobiol. 2006;34:549-59. DOI: 10.1002/aheh.200400653.
  • [18] Ejigu M. Overview of water quality modeling. Cogent Eng. 2021;8:1. DOI: 10.1080/23311916.2021.1891711.
  • [19] Abdeveis S, Sedghi H, Hassonizadeh H, Babazadeh H. Application of water quality index and water quality model QUAL2K for evaluation of pollutants in Dez River, Iran. Water Resour. 2020;47:892-903. DOI: 10.1134/S0097807820050188.
  • [20] Ajiwibowo H, Ash-Shiddiq RHB, Pratama MB. Water quality and sedimentation modelling in Singkarak Lake, Western Sumatra. Geomate J. 2009;16(54):94-102. DOI: 10.21660/2019.54.8145.
  • [21] Akomeah E, Davies JM, Lindenschmidt KE. Water quality modeling of phytoplankton and nutrient cycles of a complex cold-region river-lake system. Environ Model Assess. 2019;25:293-306. DOI: 10.1007/s10666-019-09681-x.
  • [22] Bottelli DN, Santisi S, Martjena SH. A system of hydrodynamic, water quality and neural network models for predicting water quality in the Rio de la Plata estuary. Deltas of the future and what happens upstream. 36th IAHR World Congress; 2015. Available from: https://www.iahr.org/library/info?pid=7832.
  • [23] Lung WS, Larson E. Water quality modeling of upper Mississippi River and Lake Pepin. J Environ Eng. 1995;121(10). DOI: 10.1061/(ASCE)0733-9372(1995)121:10(691).
  • [24] BfG. QSim - the water quality model of the Federal Institute of Hydrology (BfG). Koblenz; 2018. DOI: 10.5675/BfG_QSim.
  • [25] Hardenbicker P, Rolinski S, Weitere M, Fischer H. Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers. Int Rev Hydrobiol. 2014;99(4):287-99. DOI: 10.1002/iroh.201301680.
  • [26] Hardenbicker P, Weitere M, Ritz S, Schöll F, Fischer H. Longitudinal plankton dynamics in the rivers Rhine and Elbe. Riv Res Appl. 2016;32(6):1264-78. DOI: 10.1002/rra.2977.
  • [27] Hein B, Viergutz C, Wyrwa J, Kirchesch V, Schöl A. Impacts of climate change on the water quality of the Elbe Estuary (Germany). J Appl Water Eng Res. 2018;6(1):28-39. DOI: 10.5194/egusphere-2022-1028.
  • [28] Quiel K, Becker A, Kirchesch V, Schöl A, Fischer H. Influence of global change on phytoplankton and nutrient cycling in the Elbe River. Reg Environ Change. 2012;11:405-21. DOI: 10.1007/s10113-010-0152-2.
  • [29] Billen G, Garnier J, Ficht A, Cun C. Modelling the response of water quality in the Seine River Estuary to human activity in its watershed over the last 50 years. Estuaries. 2001;24(6B):977-93. DOI: 10.2307/1353011.
  • [30] Ducharne A, Baubion C, Beaudoin N, Benoit M, Billen G, Brisson N, et al. Long-term prospective of the Seine River system: Confronting climatic and direct anthropogenic changes. Sci Total Environ. 2007;375:292-311. DOI: 10.1016/j.scitotenv.2006.12.011.
  • [31] Schöl A, Hein B, Wyrwa J, Kirchesch V. Modelling water quality in the Elbe and its estuary - Large scale and long-term applications with focus on the oxygen budget of the estuary. Die Küste. 2014;81. Available from: https://izw.baw.de/die-kueste/0/k081115.pdf.
  • [32] Schöl A, Kirchesch V, Bergfeld T, Schöll F, Borcherding J, Müller D. Modelling the chlorophyll a content of the river Rhine - Interrelation between riverine algal production and population biomass of grazers, rotifers and the zebra mussel Dreissena polymorpha. Int Rev Hydrobiol. 2002;87(2-3):295-317. DOI: 10.1002/1522-2632(200205)87:2/3<295::AID-IROH295>3.0.CO;2-B.
  • [33] Matzinger A, Fischer H, Schmid M. Modellierung von biogeochemischen Prozessen in Fließgewässern. 2012. DOI: 10.1002/9783527678488.hbal2012001.
  • [34] Ruter A, Becker A, Bergfeld-Wiedemann T, Hein B, Viergutz C. Das Gewassergutemodell QSim: Handbuch zur Benutzeroberfläche GERRIS (The QSim Water Quality Model: User Manual for the GERRIS Interface). BfG - 1778; 2013. 99p. DOI: BfG/2015/BfG-1778.pdf.
  • [35] Moriasi DN, Wilson BN, Douglas-Mankin KR, Arnold JG, Gowda PH. Hydrologic and water quality models: Use, calibration, and validation. Trans ASABE. 2012;55(4):1241-7. DOI: 10.13031/2013.42265.
  • [36] Moriasi D, Gitau M, Pai N, Daggupati P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans ASABE. 2015;58:1763-85. DOI: 10.13031/trans.58.10715.
  • [37] Arhonditsis G, Brett M. Evaluation of the current state of mechanistic aquatic biogeochemical modelling. Mar Ecol Prog Ser. 2004;271:13. DOI: 10.3354/meps271013.
  • [38] Gupta H, Sorooshian S, Yapo P. Toward improved calibration of hydrologic models: Multiple and non-commensurable measures of information. Water Resour Res. 1998;34. DOI: 10.1029/97WR03495.
  • [39] Viergutz C, Weitere M. Ökologie von Corbicula fluminea und Corbicula fluminalis als Grundlage für die Gewässergütemodellierung. Literaturstudie und Datenauswertung. Bundesanstalt für Gewässerkunde; 2013. DOI: 10.5675/kliwas_10.2013_corbicula.
  • [40] Benjamin MM. Water Chemistry. 2nd ed. Waveland Press; 2015. ISBN: 9781478623083.
  • [41] Bergfeld-Wiedemann T, Scherwass A, Ackermann B, Fischer H, Arndt H, Schöl A. Longitudinal and seasonal dynamics of the planktonic microbial community along the length of the River Rhine. River Syst. 2011;19:337-49. DOI: 10.1127/1868-5749/2011/020-0037.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3952ab04-9b62-4f28-939a-446ef40db4d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.