PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of aerodynamic parameters of solar plane airfoil using CFD modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The technology of solar-powered aerial vehicles requires enormous financial support and further development. For this purpose, the computational fluid dynamic can be used. In order to carry out necessary analyses and model development in this research, ANSYS Fluent software was used. Using the first version of the AGH Solar Plane model, preliminary analysis of lift, drag and tearing off the stream was performed. Four new geometries were prepared on which the flattening of upper surfaces for fixing solar panels was tested. The results were validated in the aerodynamic tunnel using particle image velocimetry method. Taking into account all analyses, a number of recommendations have been prepared that will be implemented to create an aircraft, which meets all target requirements.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
123–142
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Krakow
  • AGH University of Science and Technology, Krakow
  • AGH University of Science and Technology, Krakow
  • AGH University of Science and Technology, Krakow
  • AGH University of Science and Technology, Krakow
  • AGH University of Science and Technology, Krakow
  • AGH University of Science and Technology, Krakow
  • AGH University of Science and Technology, Krakow
Bibliografia
  • [1] Abbe G., Smith H.: Technological development trends in Solar-powered Aircraft Systems, Renewable and Sustainable Energy Reviews, vol. 60, pp. 770–783, 2016.
  • [2] Betancourth N.J.P., Villamarin J.E.P., Rios J.J.: Design and Manufacture of a Solar-Powered Unmanned Aerial Vehicle for Civilian Surveillance Missions, Journal of Aerospace Technology and Management, vol. 8, pp. 385–439, 2016.
  • [3] Boucher R.: Project Sunrise, Astro Flight Inc, 1975.
  • [4] Cebeci T., Shao J.P., Kafyeke F., Laurendeau E.: Computational Fluid Dynamics for Engineers, Springer-Verlag, Berlin–Heidelberg, 2005.
  • [5] Chen J., Wang Z., Zhang J., Zhang L., Wu G.: Numerical Simulation for Changes in Aerodynamic Characteristics Along the Spanwise of ”Diamond Back” Wing, Procedia Engineering, vol. 99, pp. 566–574, 2015.
  • [6] Dawson D.: Solar Impulse 2: Pulse on the future, Composites World, vol. 71, pp. 36–53, 2016.
  • [7] Gatski T.B., Speziale C.G.: On explicit algebraic stress models for complex turbulent flows, Journal of Fluid Mechanics, vol. 254, pp. 59–78, 1993. doi:10. 1017/S0022112093002034.
  • [8] Jones W.P., Launder B.E.: The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, vol. 15(2), pp. 301–314, 1972. doi:10.1016/0017-9310(72)90076-2.
  • [9] Li Q., Ma Q.W., Yan S.: Investigations on the future of turbulent viscosity associated with vortex shedding, Procedia Engineering, vol. 126, pp. 73–77, 2015.
  • [10] Ma D., Zhao Y., Qiao Y., Li G.: Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number, Chinese Journal of Aeronautics, vol. 28, pp. 1003–1015, 2015.
  • [11] Nguyen C.: Turbulence Modeling, 2005. http://web.mit.edu/˜cuongng/www/Site/ Publication˙files/TurbulenceModeling˙04NOV05.pdf.
  • [12] Noth A., Siegwart R., Engel W.: Design of Solar Powered Airplanes for Continuous Flight, Environmental Research, vol. 18, 2007.
  • [13] Panagiotou P., Giannakis E., Savaidis G., Yakinthos K.: Aerodynamic and structural design for the development of a MALE UAV, Aircraft Engineering and Aerospace Technology, vol. 90, pp. 1077–1087, 2018.
  • [14] Panagiotou P., Tsavlidis I., Yakinthos K.: Conceptual design of a hybrid solar MALE UAV, Aerospace Science and Technology, vol. 53, pp. 207–219, 2016.
  • [15] Papis K., Figaj R., Ku˙s J., Żołądek M., Zając M.: Application of photovoltaic cells as a source of energy in unmanned aerial vehicle (UAV) – case study, E3S Web of Conferences, vol. 173, 2020.
  • [16] Park D., Lee Y., Cho T., Kim C.: Design and Performance Evaluation of Propeller for Solar-Powered High-Atitude Long-Endurance Unmanned Aerial Vehicle, International Journal of Aerospace Engineering, pp. 1–23, 2018.
  • [17] Rajendran P., Smith H.: Development of Design Methodology for a Small SolarPowered Unmanned Aerial Vehicle, International Journal of Aerospace Engineering, p. 10, 2018.
  • [18] Rizzo E., Frediani A.: A model for solar powered aircraft preliminary design, The Aeronautical Journal, vol. 112, pp. 57–78, 2008.
  • [19] Solar Impulse: Around the World in a Solar Airplane, 2016.
  • [20] Spalart P.R., Allmaras S.R.: A one-equation turbulence model for aerodynamic flows, AIAA, pp. 1–22, 1992.
  • [21] Wang S., Ma D., Yang M., Zhang L., Li G.: Flight strategy optimisation for high-altitude long-endurance solar-powered aircraft based on Gauss pseudo-spectral method, Chinese Journal of Aeronautics, vol. 32, pp. 2286–2298, 2019.
  • [22] Wilcox D.C.: Reassessment of the scale-determining equation for advanced turbulence models, AIAA Journal, vol. 26(11), pp. 1299–1310, 1988. doi:10.2514/3.10041.
  • [23] Woelke M.: Eddy Viscosity Turbulence Models emploed by Computational Fluid Dynamic, Prace Instytutu Lotnictwa, vol. 4, pp. 92–113, 2007.
  • [24] Xian-Zhong G., Zhong-Xi H., Zheng G., Xiao-Qian C.: Reviews of methods to extract and store energy for solar-powered aircraft, Renewable and Sustainable Energy Reviews, vol. 44, pp. 96–108, 2015.
  • [25] Xian-Zhong G., Zhong-Xi H., Zheng G., Xiong F., Jian-Xia L., Xiao-Qian C.: Parameters determination for concept design of solar-powered, high-altitude long-endurance UAV, Aircraft Engineering and Aerospace Technology, vol. 85, pp. 293–303, 2013.
  • [26] Xiongfeng Z., Zheng G., Zhongxi H.: Solar-powered airplanes: A historical perspective and future challenges, Progress in Aerospace Sciences, vol. 71, pp. 36–53, 2014
Uwagi
PL
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-395198cf-9d3c-4426-9679-b3cacb56be4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.