PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

H∞ control and experimental study of MR semi-active suspension with actuator response delay

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Given the potential negative impact of delayed response from a magnetorheological (MR) damper on the effectiveness of semi-active suspension (SAS), a specialized time-delay dependent H robust controller has been developed to address this issue. The controller accounts for the actuator response delay and determines the system theoretical critical delay. To mitigate the response delay within the electromagnetic loop of the actuator, a technique has been proposed and tested. The technique minimizes the overall response delay, ensuring it is less than the theoretical critical delay. Subsequently, feedback gain is determined and comparative performance tests are conducted to validate the efficacy of the proposed control method. Compared with a delay-independent H robust controller, it has been demonstrated that the body acceleration and dynamic tire load peak-to-peak responses generated by the proposed controller are decreased by 16.4% and 7.4% respectively under bumpy road conditions, while under stochastic road conditions, body acceleration decreases by 3.5%, suspension deflection by 17.1%, and DTL by 0.89%.
Rocznik
Strony
797--812
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
  • State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin 130015, China
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
  • School of Communication Engineering, Jilin University, Changchun, Jilin 130015, China
autor
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
  • School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
autor
  • School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
autor
  • Jiangsu Tangchen Automotive Parts Co., Ltd, Nantong 226500, China
Bibliografia
  • [1] Ding, R., Wang, R., Meng, X., Liu, W., & Chen, L. (2021). Intelligent switching control of hybrid electromagnetic active suspension based on road identification. Mechanical Systems and Signal Processing, 152, 107355. https://doi.org/10.1016/j.ymssp.2020.107355
  • [2] Sun, X., Wu, M., Yin, C., Wang, S., & Tian, X. (2021). Multiple-Iteration Search Sensorless Control for Linear Motor in Vehicle Regenerative Suspension. IEEE Transactions on Transportation Electrification, 7(3), 1628-1637. https://doi.org/10.1109/tte.2021.3052989
  • [3] Chen, L., Ding, R., Meng, X., & Wang, R. (2023). Optimal design and experimental research on a new HEMA with energy reduction for vehicle suspension systems. International Journal of Vehicle Design, 93(1/2), 66-86. https://doi.org/10.1504/ijvd.2023.10060273
  • [4] Liu, W., Wang, R., Ding, R., Meng, X., & Yang, L. (2020). On-line estimation of road profile in semi-active suspension based on unsprung mass acceleration. Mechanical Systems and Signal Processing, 135, 106370. https://doi.org/10.1016/j.ymssp.2019.106370
  • [5] Cha, Y.-J., Agrawal, A. K., & Dyke, S. J. (2012). Time delay effects on large-scale MR damper based semi-active control strategies. Smart Materials and Structures, 22(1), 015011. https://doi.org/10.1088/0964-1726/22/1/015011
  • [6] Yoon, D.-S., Park, Y.-J., & Choi, S.-B. (2019). An eddy current effect on the response time of a magnetorheological damper: Analysis and experimental validation. Mechanical Systems and Signal Processing, 127, 136-158. https://doi.org/10.1016/j.ymssp.2019.02.058
  • [7] Pang, H., Fu, W.-Q., & Liu, K. (2015). Stability analysis and fuzzy Smith compensation control for semi-active suspension systems with time delay. Journal of Intelligent & Fuzzy Systems, 29(6), 2513-2525. https://doi.org/10.3233/ifs-151954
  • [8] Tao, L., Chen, S., Fang, G., & Zu, G. (2019). Smith Predictor-Taylor Series-Based LQG Control for Time Delay Compensation of Vehicle Semiactive Suspension. Shock and Vibration, 2019(1). https://doi.org/10.1155/2019/3476826
  • [9] Li, G., Gan, Y., Liu, Q., Xu, H., Chen, D., Zhong, L., Deng, J., & Hu, G. (2024). Performance analysis of vehicle magnetorheological semi-active air suspension based on S-QFSMC control. Frontiers in Materials, 11. https://doi.org/10.3389/fmats.2024.1358319
  • [10] Karim Afshar, K., Javadi, A., & Jahed-Motlagh, M. R. (2018). Robust control of an active suspension system with actuator time delay by predictor feedback. IET Control Theory & Applications, 12(7), 1012-1023. https://doi.org/10.1049/iet-cta.2017.0970
  • [11] Gu, B., Cong, J., Zhao, J., Chen, H., & Fatemi Golshan, M. (2022). A novel robust finite time control approach for a nonlinear disturbed quarter-vehicle suspension system with time delay actuation. Automatika, 63(4), 627-639. https://doi.org/10.1080/00051144.2022.2059205
  • [12] Yin, Y., Luo, B., Ren, H., Fang, Q., & Zhang, C. (2022). Robust control design for active suspension system with uncertain dynamics and actuator time delay. Journal of Mechanical Science and Technology, 36(12), 6319-6327. https://doi.org/10.1007/s12206-022-1143-1
  • [13] Li, J. W., Luo, J. N., Huang, Z. (2024). Study on a semi-active suspension controller considering time delay of CDC system. Vehicle Engineering, 46(05), 913-922. https://doi.org/10.19562/j.chinasae.qcgc.2024.05.017
  • [14] Yang, L. Q., Zhao, Y. Y. (2023). Multi-objective optimization design of a grounded stiffness time delay feedback dynamic vibration absorber with inerter. Journal of Vibration and Shock, 42(23), 133-143.
  • [15] Liu, C., Chen, L., Zhang, X., & Yang, X. (2020). Stability analysis of semi-active inerter-spring-damper suspensions based on time-delay. Journal of Theoretical and Applied Mechanics, 58(3), 599-610. https://doi.org/10.15632/jtam-pl/121975
  • [16] Wu, K., Ren, C., & Atay, F.M. (2024). Enhancing energy recovery in automotive suspension systems by utilizing time-delay. Energy, 300, 131578. https://doi.org/10.1016/j.energy.2024.131578
  • [17] Zhu, M., Lv, G., Zhang, C., Jiang, J., & Wang, H. (2022). Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension. IEEE Access, 10, 51128-51141. https://doi.org/10.1109/access.2022.3173605
  • [18] Nan, Y., Shao, S., Ren, C., Wu, K., Cheng, Y., & Zhou, P. (2023). Simulation and Experimental Research on Active Suspension System with Time-Delay Feedback Control. IEEE Access, 11, 88498-88510. https://doi.org/10.1109/access.2023.3305265
  • [19] Hong, S. R., Wereley, N. M., Choi, Y.T., & Choi, S. B. (2008). Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers. Journal of Sound and Vibration, 312(3), 399-417. https://doi.org/10.1016/j.jsv.2007.07.087
  • [20] Ding, R., Wang, R., Meng, X., & Chen, L. (2019). Energy consumption sensitivity analysis and energy-reduction control of hybrid electromagnetic active suspension. Mechanical Systems and Signal Processing, 134, 106301. https://doi.org/10.1016/j.ymssp.2019.106301
  • [21] El Ghaoui, L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 42(8), 1171-1176. https://doi.org/10.1109/9.618250
  • [22] Gouaisbaut, F., & Peaucelle, D. (2006). Delay-dependent stability analysis of linear time delay systems. IFAC Proceedings Volumes, 39(10), 54-59. https://doi.org/10.3182/20060710-3-it-4901.00010
  • [23] Koo, J.-H., Goncalves, F.D., & Ahmadian, M. (2004). Investigation of the response time of magnetorheological fluid dampers. In K.-W. Wang (Ed.), SPIE Proceedings (Vol. 5386, p. 63). SPIE. https://doi.org/10.1117/12.539643
Uwagi
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The present work is supported by the Open Fund of State Key Laboratory of Automotive Simulation and Control (Project Number-20210204)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-394c5b72-8af2-427d-97ba-304379d47cc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.