PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Baltic herring morphometry and its impact on the backscattering properties

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Previous studies, dedicated to backscattering properties of Baltic herring, have shown the different target strength (TS – which is a measure of fish capacity to scatter sound) values, for the same species in different regions and seasons. The intraspecies differentiation in fish physiology and morphology as well as fish swimbladder morphometry between herring aggregations, occupying various parts of the Baltic Sea, has been supposed as one of the reasons for the variability. The paper addresses analysis of herring swimbladder morphometry and its impact on TS of individuals from ICES subdivision 26, one of the areas where Poland is responsible for herring biomass estimation. The collection of the X-rays images for 74 herring individuals, sampled in this subdivision, was created. The two-dimensional digitized dorsal images of herring swimbladder and body, as well as the angles between the swimbladder and the body longitudinal axis, were used to compute the target strength. The differentiation of herring morphometry within particular fish size classes was analysed and its consequences for the averaged target strength within the class was discussed. The difference from the previous numerical studies, in which the simplified herring morphometry was used, was also demonstrated. The computational results were considered in regard to the available in situ measured data on Baltic herring TS. The study of the Baltic herring target strength is important for increasing accuracy of acoustic biomass estimation of this ecologically and economically important species.
Czasopismo
Rocznik
Strony
198--211
Opis fizyczny
Bibliogr., 71 poz., rys., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Gdynia, Poland
Bibliografia
  • 1. Beltestad, A.K., 1973. Feeding behavior and vertical migration in 0-group herring (Clupea harengus L.) in relation to light intensity, Candidata realium thesis. University of Bergen, Norway.
  • 2. Bignert, A., Nyberg, E., Asplund, L., Eriksson, U., Wilander, A., Haglund, P., 2007. Metaller och organiska miljögifter i marin biota, trend- och områdesövervakning, Sakrapport. Swedish Museum of Natural History, Stockholm, 122 pp.
  • 3. Blaxter, J.H.S., Batty, R.S., 1990. Swimbladder "behaviour" and target strength. Rap. Proces. 189, 233-244.
  • 4. Brawn, V.M., 1969. Buoyancy of Atlantic and Pacific herring. J. Fisheries Res. Board of Canada 26, 2077-2091.
  • 5. Cardinale, M., Arrhenius, F., 2000. Decreasing weight-at-age of Atlantic herring (Clupea harengus) from the Baltic Sea between 1986 and 1996: a statistical analysis. ICES J. Mar. Sci. 57, 882-893. https://doi.org/10.1139/f00-221
  • 6. Chapman, R., 2006. A sea water equation of state calculator. http://fermi.jhuapl.edu/denscalc.html
  • 7. Clay, C.S., Horne, J.K, 1994. Acoustic models of fish: the Atlantic cod (Gadus morhua). J. Acoust Soc. Am. 96, 1661-1668. https://doi.org/10.1121/1.410245
  • 8. Didrikas, T., 2005. Estimation of in situ target strength of the Baltic Sea herring and sprat, Department of Systems Ecology. Stockholm University, 1-5.
  • 9. Didrikas, T., Hansson, S., 2004. In situ target strength of the Baltic Sea herring and sprat. ICES J. Mar. Sci. 61, 378-382. https://doi.org/10.1016/S1054-3139(04)00005-0
  • 10. Edwards, J.I., Armstrong, F., 1981. Measurement of the target strength of live herring and mackerel, ICES CM /B:26.
  • 11. Edwards, J.I., Armstrong, F., 1983. Measurement of the target strength of live herring and mackerel. FAO Fish 300, 69-77.
  • 12. Edwards, J.I., Armstrong, F., 1984. Target strength experiments on caged fish. Scottish Fisheries Bull. 48, 12-20.
  • 13. Edwards, J.I., Armstrong, F., Magurran, A.E., Pitcher, T.J., 1984. Herring, mackerel and sprat target strength experiments with behavioural observations. ICES CM /B 34.
  • 14. Fässler, S.M.M., 2010. Target strength variability in atlantic herring (Clupea harengus) and its effect on acoustic abundance estimates. In: Fässler, S.M.M., A Thesis Submitted for the Degree of PhD at the University of St. Andrews. http://hdl.handle.net/10023/1703
  • 15. Fässler, S.M.M., Gorska, N., 2008. Investigation of the target strength-to-length relationship of Baltic herring (Clupea harengus) for use in biomass estimation. 3rd US/EU Baltic International Symposium.
  • 16. Fässler, S.M.M., Gorska, N., 2009. On the target strength of Baltic clupeids. ICES J. Mar. Sci. 66, 1184-1190.
  • 17. Fässler, S.M.M., Gorska, N., Ona, E., Fernandes, P.G., 2008. Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength. Fish. Res. 92, 314-321. https://doi.org/10.1016/j.fishres.2008.01.013
  • 18. Fofonoff, N.P., Millard, R.C., 1983. Algorithms for computation of fundamental properties of seawater, UNESCO R. M. 44. UNESCO Division of Marine Science, Paris. http://hdl.handle.net/11329/109
  • 19. Foote, K.G., Aglen, A., Nakken, O., 1986. Measurements of fish target strength with split-beam echo sounder. J. Acoust. Soc. Am. 80, 612-621. https://doi.org/10.1121/1.394056
  • 20. Foote, K.G., Traynor, J.J., 1988. Comparison of walleye pollock target strength estimates determined from in situ measurements and calculations based on swimbladder form. J. Acoust. Soc. Am. 83, 9-17.
  • 21. Godø, O.R., Handegard, N.O., Browman, H.I., Macaulay, G.J., Kaartvedt, S., Giske, J., Ona, E., Huse, G., Johnsen, E., 2014. Marine ecosystem acoustics (MEA): quantifying processes in the sea at the spatiotemporal scales on which they occur. ICES J. Mar. Sci. 71, 2357-2369. https://doi.org/10.1093/icesjms/fsu116
  • 22. Gorska, N., Idczak, J., 2010. On the acoustic backscattering by Baltic herring and sprat. Hydroacoustics 13, 89-100. http://pta.eti.pg.gda.pl/journal/paper.py?id=469
  • 23. Gorska, N., Ona, E., 2003a. Modeling the effect of swimbladder compression on the acoustic backscattering from herring at normal or near-normal dorsal incidences. ICES J. Mar. Sci. 60, 1381-1391. https://doi.org/10.1016/S1054-3139(03)00142-5
  • 24. Gorska, N., Ona, E., 2003b. Modelling the acoustic effect of swimbladder compression in herring. ICES J. Mar. Sci. 60, 548-554. https://doi.org/10.1016/S1054-3139(03)00050-X
  • 25. Grelowska, G., 2000. Prevailing patterns of the sound speed distributions in the environment of the Southern Baltic. Arch. Acoust. 25, 359-368. http://acoustics.ippt.pan.pl/index.php/aa/article/view/374/312
  • 26. Grygiel, W., Ł ̨aczkowski, T., Podolska, M., Wodzinowski, T., 2011. Research report from the Baltic International Acoustic Survey (BIAS) on board of the Polish r.v. "Baltica" (20.09-08.10.2010). Working paper on the WGBIFS meeting in Kaliningrad (Russia); 21-25.03.2011, in: ICES CM 2011/SSGESST:05, REF. SCICOM, WGISUR, ACOM; Annex 9; 396-429.
  • 27. Grygiel, W., Wyszy ́nski, M., 2003. Temporal (1980-2001) and geographic variation in the sexual maturity at age and length of herring and sprat inhabiting the southern Baltic. Bulletin of the National Marine Fisheries Research Institute 159 (2), 3-34.
  • 28. Hazen, E.L., Horne, J.K., 2004. Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES J. Mar. Sci. 61, 363-377. https://doi.org/10.1016/j.icesjms.2004.01.005
  • 29. Hazen, E.L., Horne, J.K., 2003. A method for evaluating the effects of biological factors on fish target strength. ICES J. Mar. Sci. 60, 555-562. https://doi.org/10.1016/S1054-3139(03)00053-5
  • 30. Henderson, M.J., Horne, J.K., 2007. Comparison of in situ, ex situ and backscatter model estimates of Pacific hake (Merluccius productus) target strength. Can. J. Fish. Aquat. Sci. 64 (12), 1781-1794. https://doi.org/10.1139/f07-134
  • 31. Horne, J.K., 2003. The influence of ontogeny, physiology, and behaviour on the target strength of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci. 60, 1063-1074. https://doi.org/10.1016/S1054-3139(03)00114-0
  • 32. Huse, I., Korneliussen, R., 2000. Diel variation in acoustic density measurements of overwintering herring (Clupea harengus L.). ICES J. Mar. Sci. 57, 903-910. https://doi.org/10.1006/jmsc.2000.057
  • 33. Huse, I., Ona, E., 1996. Tilt angle distribution and swimming speed of overwintering Norwegian spring spawning herring. ICES J. Mar. Sci. 53, 863-873. https://academic.oup.com/icesjms/article/53/5/863/704339
  • 34. ICES, 2002. Report of the Study Group on Target Strength Estimation in the Baltic Sea. 28 pp. http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/ftc/2002/sgtseb02.pdf
  • 35. ICES, 2017. Manual for the International Baltic Acoustic Surveys (IBAS). Series of ICES Survey Protocols SISP 8 — IBAS, Version 2.0, 47 pp. http://www.ices.dk/sites/pub/Publication%20Reports/ICES%20Survey%20Protocols%20%28SISP%29/2017/SISP%208%20IBAS%202017.pdf
  • 36. Idczak, J., Gorska, N., 2016. Modelling of acoustic backscattering by southern Baltic herring. Hydroacoustic 19, 145-152. http: //pta.eti.pg.gda.pl/journal/paper.py?id=639
  • 37. Idczak, J., Gorska, N., Arciszewski, B., 2011. Study of swimblad-der morphometry of Baltic herring and sprat (development of measurement methodology). Hydroacoustics 14, 61-68. http://pta.eti.pg.gda.pl/journal/paper.py?id=499
  • 38. Idczak, J., Knia ́z-Kubacka, N., 2012. Backscattering properties of southern Baltic herring. Hydroacoustics 15, 57-64. http://pta.eti.pg.gda.pl/journal/paper.py?id=531
  • 39. Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T.I., Gorska, N., Jones, B., Lavery, A.C., Stanton, T.K., Macaulay, G.J., Reeder, D.B., Sawada, K., 2015. Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. J. Acoust. Soc. Am. 138, 3742-3764. https://doi.org/10.1121/1.4937607
  • 40. Kasatkina, S.M., 2009. The influence of uncertainty in target strength on abundance indices based on acoustic surveys: examples of the Baltic Sea herring and sprat. ICES J. Mar. Sci. 66, 1404-1409. https://doi.org/10.1093/icesjms/fsp086
  • 41. Knudsen, F.R., Fosseidengen, J.E., Oppedal, F., Karlsen, Ø., Ona, E., 2004. Hydroacoustic monitoring of fish in sea cages: target strength (TS) measurements on Atlantic salmon (Salmo salar). Fish. Res. 69, 205-209. https://doi.org/10.1016/j.fishres.2004.05.008
  • 42. Kullenberg, G, 1981. Chapter 3 Physical Oceanography. Elsevier Oceanography Series 30, 135-181. https://doi.org/10.1016/S0422-9894(08)70140-5
  • 43. Lassen, H., Stæhr, K.J., 1985. Target strength of Baltic herring and sprat measured in-situ. ICES CM. B 41, 1-14.
  • 44. Macaulay, G.J., 2002. Anatomically detailed acoustic scattering models of fish. Bioacoustics 12, 275-277. https://doi.org/10.1080/09524622.2002.9753720
  • 45. Nakken, O., Olsen, K., 1977. Target strength measurements of fish. Rap. Proces. 170, 52-69.
  • Ojaveer, E., 1988. Baltic Herrings. In: Biology and Management. Agropromizdat, Moscow, Russia, 204.
  • 46. Okumura, T., Masuya, T., 2004. Three dimensional morphometry of fish body structure by X-ray CT. Oceans 1, 354-356.
  • 47. Olsen, K., Angell, J., Pettersen, F., Løvik, A., 1983. Observed fish reactions to a surveying vessel with special reference to herring, cod, capelin and polar cod. FAO Fish 300, 131-138.
  • 48. Ona, E., 1984. Tilt measurements on herring, ICES Pelagic Fish Committee B:19. Institute of Marine Research, Bergen, Norway, 13 pp.
  • 49. Ona, E., 1990. Physiological factors causing natural variations in acoustic target strength of fish. J. Mar. Biol. Assoc. UK 70, 107-127.
  • 50. Ona, E., 2001. Herring tilt angles, measured through target tracking. In: Funk, F., Blackburn, J., Hay, D., Paul, A.J., Stephenson, R., Toresen, D., Witherell, R. (Eds.), Herring: Expectations for a new millennium. University of Alaska, Fairbanks, 509-520.
  • 51. Ona, E., 2003. An expanded target-strength relationship for herring. ICES J. Mar. Sci. 60, 493-499. http://hdl.handle.net/11250/108201
  • 52. Ona, E., Zhao, X., Svellingen, I., Fosseidengen, J.E., 2001. Seasonal variation in herring target strength. In: Funk, F., Blackburn, J., Hay, D., Paul, A.J., Stephenson, R., Toresen, D., Witherell, R. (Eds.), Herring: Expectations for a new millennium. University of Alaska, 461-487.
  • 53. Pedersen, G., Handegard, N.O., Ona, E., 2009. Lateral-aspect, target-strength measurements of in situ herring (Clupea harengus). ICES J. Mar. Sci. 66, 1191-1196. https://doi.org/10.1093/icesjms/fsp121
  • 54. Peltonen, H., Balk, H., 2005. The acoustic target strength of herring (Clupea harengus L.) in the northern Baltic Sea. ICES J. Mar. Sci. 62, 803-808. https://doi.org/10.1016/j.icesjms.2005.02.001
  • 55. Pena, H., Foote, K.G., 2008. Modelling the target strength of Trachurus symmetricus murphyi based on high-resolution swimbladder morphometry using an MRI scanner. ICES J. Mar. Sci. 65, 1751-1761. https://doi.org/10.1093/icesjms/fsn190
  • 56. Pérez-Arjona, I., Godinho, L., Espinosa, V., 2018. Numerical simulation of target strength measurements from near to far field of fish using the method of fundamental solutions. Acta Acust. United Ac. 104, 25-38. https://doi.org/10.3813/AAA.919142
  • 57. Rak, D., Wieczorek, P., 2012. Variability of temperature and salinity over the last decade in selected regions of the southern Baltic Sea. Oceanologia 54 (3), 339-354. https://doi.org/10.5697/oc.54-3.339
  • 58. Reeder, D.B., Jech, J.M., Stanton, T.K., 2004. Broadband acoustic backscatter and high-resolution morphology of fish: measurements and modelling. J. Acoust. Soc. Am. 116, 747-761. https://doi.org/10.1121/1.1648318
  • 59. Rudstam, L.G., Hansson, S., Lindem, T., Einhouse, D.W., 1999. Comparison of target strength distributions and fish densities obtained with split- and single-beam echosounders. Fish. Res. 42, 207-214. https://doi.org/10.1016/S0165-7836(99)00047-8
  • 60. Rudstam, L.G., Lindem, T., Hansson, S., 1988. Density and in situ target strength of herring and sprat: a comparison between two methods of analyzing single beam sonar data. Fish. Res. 6, 305-315. https://doi.org/10.1016/0165-7836(88)90001-X
  • 61. Sawada, K., Ye, Z., Kieser, R., McFarlane, G.A., Miyanohana, Y., Furusawa, M., 1999. Target strength measurements and modeling of walleye pollock and Pacific hake. Fisheries Sci. 65, 193-205. https://doi.org/10.2331/fishsci.65.193
  • 62. Schmidt, B., Gorska, N., Szczucka, J., 2011. Target strength relationship for herring and sprat in the southern Baltic Sea. ICES
  • 63. Annual Science Conference, Gdańsk, Poland, 19—23 September, 2011, ICES Council Meeting 2011/R:15.
  • 64. Simmonds, E.J., MacLennan, D.N., 2005. Fisheries Acoustics: Theory and Practice. In: Fish Fisheries Serie. Blackwell Publishing, Oxford, UK, 472 pp.
  • 65. Stanton, T.K., 1988a. Sound scattering by cylinders of finite length. I. Fluid cylinders. J. Acoust. Soc. Am. 83, 55-63. https://doi.org/10.1121/1.396184
  • 66. Stanton, T.K., 1988b. Sound scattering by cylinders of finite length. II. Elastic cylinders. J. Acoust. Soc. Am. 83, 64-67. https://doi.org/10.1121/1.396185
  • 67. Stanton, T.K., 1989. Sound scattering by cylinders of finite length. III. Deformed cylinders. J. Acoust. Soc. Am. 86, 691-705. https://doi.org/10.1121/1.398193
  • 68. Trenkel, V.M., Handegard, N.O., Weber, T.C, 2016. Observing the ocean interior in support of integrated management. ICES J. Mar. Res. 73, 1947-1954. https://doi.org/10.1093/icesjms/fsw132
  • 69. Trenkel, V.M., Ressler, P.H., Jech, M., Giannoulaki, M., Taylor, C., 2011. Underwater acoustics for ecosystem-based management: state of the science and proposals for ecosystem indicators. Mar. Ecol. Prog. Ser. 442, 285-301. https://doi.org/10.3354/meps09425
  • 70. Wanzenböck, J., Kubecka, J., Sajdlova, Z., Frouzova, J., 2020. Hydroacoustic target strength vs. fish length revisited: Data of caged, free-swimming European whitefish (Coregonus lavaretus L.) suggest a bi-phasic linear relationship under a limited range of tilt angles. Fish. Res. 229, 105620. https://doi.org/10.1016/j.fishres.2020.105620
  • 71. Wyszy ́nski, M., 1997. Charakterystyka biologiczno-technologiczna śledzia południowego Bałtyku, Study and material, Ser. B 69, National Marine Fisheries Institute, Gdynia, Poland, 94-123.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-394acf1e-940a-4bcd-925a-5a75f7706ad7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.