PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of vessel scale on gas hold-up in gas-liquid systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research presented in this paper was to determine the effect of vessel scale on gas hold- up in gas-liquid systems. The agitated vessel with internal diameters of T = 0:288 m and T = 0:634 m was filled with a liquid up to the height H = T. For the purpose of measurements, two high-speed impellers were used: Rushton turbine impeller (RT) or A 315 impeller.Within the study, the following parameters were altered: superficial gas velocity, impeller speed, impeller type and concentration of aqueous sucrose solution. In addition, influence of the vessel scale on gas hold-up value was analysed. Experimental results were mathematically described. Equations (5)–(7) do not have equivalents in the literature.
Rocznik
Strony
241–--256
Opis fizyczny
Bibliogr. 44 poz., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Arjunwadkar S.J., Saravanan K., Pandit A.B., Kulkarni P.R., 1998. Optimizing the impeller combination for maximum hold-up with minimum power consumption. Biochem. Eng. J., 1, 25–30. DOI: 10.1016/S1369-703X(97)00005-3.
  • 2. Bouaifi M., Hebrard G., Bastoul D., Roustan M., 2001. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chem. Eng. Process., 40, 97–111. DOI: 10.1016/S0255-2701(00)00129-X.
  • 3. Busciglio A., Grisafi F., Scargiali F., Brucata A., 2013. On the measurement of local gas hold-up, interfacial area and bubble size distribution in gas-liquid contactors via light sheet and image analysis: Imaging technique and experimental results. Chem. Eng. Sci., 102, 551–566. DOI: 10.1016/j.ces.2013.08.029.
  • 4. Busciglio A., Opletal M., Moucha T., Montante G., Paglianti A., 2017. Measurement of gas hold-up distribution in stirred vessels equipped with pitched blade turbines by means of Electrical Resistance Tomography. Chem. Eng. Trans. 57, 1273–1278. DOI: 10.3303/CET1757213.
  • 5. Cooke H., Heggs P.J., 2005. Advantages of the hollow (concave) turbine for multi-phase agitation under intense operating conditions. Chem. Eng. Sci., 60, 5529–5543. DOI: 10.1016/j.ces.2005.05.018.
  • 6. Cudak M., 2011. Process characteristics for the mechanically agitated gas-liquid systems in the turbulent fluid flow (in Polish). Przem. Chem. 90, 9, 1628–1632.
  • 7. Cudak M., 2014. Hydrodynamic characteristics of mechanically agitated air-aqueous sucrose solutions. Chem. Process Eng., 35, 1, 97–107. DOI: 10.2478/cpe-2014-0007.
  • 8. Cudak M., 2016. Experimental and numerical analysis of transfer processes in a biophase-gas-liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa.
  • 9. Garcia-Ochoa F., Gomez E., 2004. Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem. Eng. Sci., 59, 2489–2501. DOI: 10.1016/j.ces.2004.02.009.
  • 10. Gogate P.R., Beenackers A.A.C.M., Pandit A.B., 2000. Multiple-impeller systems with a special emphasis on bioreactors: a critical review. Biochem. Eng. J., 6, 109–144. DOI: 1016/S1369-703X(00)00081-4.
  • 11. Kamieński J., 2004. Agitation of multiphase systems (in Polish). WNT, Warszawa.
  • 12. Karcz J., 1998. Badania udziału gazu zatrzymanego w cieczy w smukłym mieszalniku zaopatrzonym w jedno lub dwa mieszadła turbinowe tarczowe. Inż. Chem. i Proc., 19, 2, 335–352.
  • 13. Karcz J., Siciarz R., 2004. An analysis of the stirred tank scale on the gas-liquid dispersion in the tank with single or dual impellers (in Polish). Inż. Chem. i Proc., 25, 3/2, 1075–1081.
  • 14. Karcz J., Siciarz R., Bielka I., 2004. Gas hold-up in a reactor with dual system of impellers. Chem. Pap., 58, 6, 404–409.
  • 15. Khare A.S., Niranjan K., 1999. An experimental investigation into the effect of impeller design on gas hold-up in a highly viscous Newtonian liquids. Chem. Eng. Sci., 54, 1093–1100. DOI: 10.1016/S0009-2509(98)00479-5.
  • 16. Khare A.S., Niranjan K., 2002. The effect of impeller design on gas hold-up in surfactant containing highly viscous non-Newtonian agitated liquids. Chem. Eng. Process. Process Intensif., 41, 239–249. DOI: 10.1016/S0255-2701(01)00139-8.
  • 17. Khare A.S., Niranjan K., 2004. The effect of vessel diameter on time dependent gas hold-up variations in highly viscous impeller agitated liquids. Chem. Eng. Process. Process Intensif., 43, 571–573. DOI: 10.1016/S0255- 2701(03)00044-8.
  • 18. Kulkarni A.A., Jha N., Singh A., Bhatnagar S., Kulkarni B.D., 2011. Fractal impeller for stirred tank reactors. Ind. Eng. Chem. Res., 50, 7667–7676. DOI: 10.1021/ie200301y.
  • 19. Lee B.W., Dudukovic M.P., 2014. Determination of flow regime and gas hold-up in gas-liquid stirred tanks. Chem. Eng. Sci., 109, 264–275. DOI: 10.1016/j.ces.2014.01.032.
  • 20. Major-Godlewska M., Karcz J., 2011. Process characteristics for a gas-liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles. Chem. Pap., 65, 2, 132–138. DOI: 10.2478/s11696-010-0080-0.
  • 21. Major-Godlewska M., Radecki D., 2018. Experimental analysis of gas hold-up for gas-liquid system agitated in a ves- sel equipped with two impellers and vertical tubular baffles. Pol. J. Chem. Tech., 20, 1, 7–12. DOI: 10.2478/pjct- 2018-0002.
  • 22. Moucha T., Linek V., Prokopova E., 2003. Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci., 58, 1839–1846. DOI: 10.1016/S0009-2509(02)00682-6.
  • 23. Mueller S.G., Dudukovic M.P., 2010. Gas hold-up in gas-liquid stirred tanks. Ind. Eng. Chem. Res., 49, 10744–10750. DOI: 10.1021/ie100542a.
  • 24. Nocentini M., Fajner D., Pasquali G., Magelli F., 1993. Gas-liquid mass transfer and hold-up in vessels stirred with multiple Rushton turbines: water and water-glycerol solutions. Ind. Eng. Chem. Res., 32, 19–26. DOI: 10.1021/ie00013a003.
  • 25. Paglianti A., Takenaka K., Bujalski W., Takahashi K., 2000. Estimation of gas hold-up in aerated vessels. Can. J. Chem. Eng., 78, 386–392. DOI: 10.1002/cjce.5450780214.
  • 26. Petricek R., Moucha T., Rejl F.J., Valenz L., Haidl J., Cmelikova T. 2018. Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transf., 124, 1117–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.04.045.
  • 27. Pinelli D., Bakker A., Myers K.J., Reeder M.F., Magelli F., 2003. Some features of a novel gas dispersion impeller in a dual-impeller configuration. Chem. Eng. Res. Des., 81, 448–454. DOI: 10.1205/026387603765173709.
  • 28. Pinelli D., Nocentini M., Magelli F., 1994. Hold-up in low viscosity gas-liquid systems stirred with multiple impellers. Comparison of different agitators types and sets. IChemESymp. 136, 81–88.
  • 29. Rewathar V.B, Joshi J.R., 1993. Effect of sparger design on gas dispersion in mechanically agitated gas/liquid reactors. Can. J. Chem. Eng., 71, 278–291. DOI: 10.1002/cjce.5450710215.
  • 30. Saravanan K., Ramamurthy V., Chandramohan K., 2009. Gas hold-up in multiple impeller agitated vessels. Mod. Appl. Sci., 3, 2, 49–59. DOI: 10.5539/mas.v3n2p49.
  • 31. Sardeshpande M.V., Gupta S., Ranade V.V., 2017. Electrical resistance tomography for gas hold-up in a gas-liquid stirred tank reactor. Chem. Eng. Sci., 170, 476–490. DOI: 10.1016/j.ces.2017.04.025.
  • 32. Shewale S.D., Pandit A.B., 2006. Studies in multiple impeller agitated gas-liquid contactors. Chem. Eng. Sci., 61, 489–504. DOI: 10.1016/j.ces.2005.04.078.
  • 33. Str˛ek F., 1981. Agitation and agitated vessels (in Polish), WNT, Warszawa.
  • 34. Takriff M.S., Hamzah A.A., Kamarudin S.K., Abdullah J., 2009. Electrical Resistance Tomography investigation of gas dispersion in gas-liquid mixing in an agitated vessel. J. Appl. Sci., 9, 17, 3110–3115. DOI: 10.3923/jas.2009. 3110.3115.
  • 35. Takriff M.S., Penney W.R., Fasano J.B., 2000. Effect of impeller diameter to vessel diameter ratio on gas hold-up. Jurnal Kejuruteraan, 12, 75–80.
  • 36. Tatterson G.B. , 1994. Scaleup and design of industrial mixing processes. McGraw-Hill Inc., New York.
  • 37. Vasconcelos J.M.T., Orvalho S.C.P.,Rodrigues A.M.A.F., Alves S.S., 2000. Effect of blade shape on the performance of six-bladed disk turbine impellers. Ind. Eng. Chem. Res., 39, 203–213. DOI: 10.1021/ie9904145.
  • 38. Vrabel P., van dr Lans R.G.J.M., Luyben K.Ch.A.M., Boon L., Nienow A.W., 2000. Mixing in large-scale vessels stirred with multiple radial or radial and axial up-pumping impellers: modeling and measurements. Chem. Eng. Sci., 55, 5881–5896. DOI: 10.1016/S0009-2509(00)00175-5.
  • 39. Wan X., Takahata Y., Takahashi K., 2016. Power consumption and gas-liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffle. Chem. Pap., 70, 4, 445–453. DOI: 10.1515/chempap-2015-0221.
  • 40. Xie M., Xia J., Zhou Z., Chu J., Zhuang Y., Zhang S., 2014. Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors. Ind. Eng. Chem. Res., 53, 5941–5953. DOI: 10.1021/ie400831s.
  • 41. Yawalkar A.A., Heesing A.B.M., Versteeg G.F., Pangarkar V.G., 2002a. Gas hold-up in stirred tank reactors in the presence of inorganic electrolytes. Can. J. Chem. Eng., 80, 791–799. DOI: 10.1002/cjce.5450800502.
  • 42. Yawalkar A.A., Pangarkar V.G., Beenackers A.C.M., 2002b. Gas hold-up in stirred tank reactors. Can. J. Chem. Eng., 80, 158–166. DOI: 10.1002/cjce.5450800117.
  • 43. Zhang L., Pan Q., Rempel G.L., 2005. Liquid backmixing and phase hold-up in a gas-liquid multistage agitated contactor. Ind. Eng. Chem. Res., 44, 5304–5311. DOI: 10.1021/ie0491701.
  • 44. Zhang L., Pan Q., Rempel G.L., 2006. Liquid phase mixing and gas hold-up in a multistage-agitated contactor with co-current up flow of air/viscous fluids. Chem. Eng. Sci., 61, 6189–6198. DOI: 10.1016/j.ces.2006.06.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-394a6a50-24f4-437e-a3ee-82dd8f1e01f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.