Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Screw axis measurement methods obtain a precise identification of the physical reality of the industrial robots’ geometry. However, these methods are in a clear disadvantage compared to mathematical optimisation processes for kinematical parameters. That’s because mathematical processes obtain kinematical parameters which best reduce the robot errors, despite not necessarily representing the real geometry of the robot. This paper takes the next step at the identification of a robot’s movement from the identification of its real kinematical parameters for the later study of every articulation’s rotation. We then obtain a combination of real kinematic and dynamic parameters which describe the robot’s movement, improving its precision with a physical understanding of the errors.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
85--98
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wzory
Twórcy
autor
- Department of Design and Manufacturing Engineering, University of Zaragoza, Zaragoza, Spain
autor
- Department of Design and Manufacturing Engineering, University of Zaragoza, Zaragoza, Spain
autor
- Centro Universitario de la Defensa, Zaragoza, Spain
autor
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
Bibliografia
- [1] Roth, Z.S., Mooring, B.W., Ravani, B (1987). An overview of robot calibration. IEEE Journal of Robotics and Automation, 3(5), 377-385.
- [2] Hollerbach, J.M., Wampler, C.W. (1996). The calibration index and taxonomy for robot kinematic calibration methods. International Journal of Robotics Research, 15(6), 573-591.
- [3] Shiakolas, P.S., Conrad, K.L., Yih, T.C. (2002). On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. International Journal of Modelling and Simulation, 22(3), 1-10.
- [4] Denavit, J., Hartenberg, R.S. (1955). A kinematic notation for lower-pair mechanisms based on matrices Journal of Applied Mechanics, 77, 215-21.
- [5] Hayati, S.A., Mirmirani, M. (1985). Improving the absolute positioning accuracy of robot manipulators. Journal of Robotics Systems, 2, 397-413.
- [6] Stone, H.W. (1987). Kinematic modeling, identification, and control of robotic manipulators, Boston: Kluwer Academic Publishers.
- [7] Sklar, M.E. (1989). Geometric calibration of industrial manipulators by circle point analysis. Proceedings of the 2nd Conference on Recent Advances in Robotics, 178-202.
- [8] Alici, G., Shirinzadeh, B. (2005). A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mechanism and Machine Theory, 40, 879-906.
- [9] Newman, W.S., Birkhimer, C.E., Horning, R.J. (2000) Calibration of a Motoman P8 robot based on laser tracking. Proceedings of the 2000 IEEE International Conference of Robotics & Automation, San Francisco, CA, 3597-3602.
- [10] Slocum, A.H. (1992). Precision machine design. Society of manufacturing engineers, 61−72.
- [11] Moré, J.J. (1977). The Levenberg-Marquardt algorithm: Implementation and theory, in Numerical Analysis, G. A. Watson, ed., Lecture Notes in Mathematics 630, Berlin: Springer-Verlag, 105-116.
- [12] Santolaria, J., Aguilar, J.J., Yagüe, J.A., Pastor, J. (2008). Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines. Precision Engineering, 32, 251-268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-394a4627-59f6-4734-a663-17f8ff90fe04