PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Present trends in research on application of artificial neural networks in agricultural engineering

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Aktualne kierunki badań dotyczących zastosowań sztucznych sieci neuronowych w inżynierii rolniczej
Języki publikacji
EN
Abstrakty
EN
The objective of the paper was to carry out a bibliometric quantitative analysis of publications concerning the application of artificial neural networks in the research area - agriculture and a bibliometric quantitative analysis and subject analysis with regard to agricultural engineering. A number of scientific publications devoted to the ANN found in the data base of the Web of Science - in documents published to 2015 was a basis for the quantitative analysis. Research on the use of artificial neural networks in the research area – agriculture is extending systematically. Moreover, a rapidly growing number of citations prove a continuous increase in the scientists' interest in possibilities of the ANN applications. The quantitative analysis of scientific publications in 5 selected scientific journals and thematically related to agricultural engineering (indexed in the Web of Science) allowed a statement that 236 scientific articles from 1996-2015 were related to the ANN application. The biggest number of publications was reported in Computers and Electronics in Agriculture - 118 articles. In 2011-2015 there was a growing trend in dynamics of publishing of scientific papers devoted to the ANN application to agricultural engineering. Thus, we may assume that the research related to application of the artificial neural networks to agricultural engineering will be continued and their scope and number will be still growing. The thematic analysis of the most often quoted publications from 2011-2015 in the journal Computers and Electronics in Agriculture, proved that they concern both the issues related to the classification problem as well as to modelling processes and systems. We should suppose that the subjects related to modelling of drying processes and application of neural networks for image analysis will grow dynamically in the following years.
PL
Celem pracy było przeprowadzenie bibliometrycznej analizy ilościowej publikacji dotyczących wykorzystania sztucznych sieci neuronowych (ANN) w obszarze badawczym rolnictwo oraz bibliometrycznej analizy ilościowej i tematycznej w dyscyplinie inżynieria rolnicza. Podstawą dla wykonania analiz ilościowych była liczba publikacji naukowych poświęconych ANN znaleziona w bazie Web of Science - dokumenty opublikowane do roku 2015. Badania nad zastosowaniami sztucznych sieci neuronowych w obszarze badawczym rolnictwo rozszerzają się systematycznie. O ciągłym wzroście zainteresowania naukowców możliwościami wykorzystania ANN świadczy również gwałtownie wzrastająca liczba cytowań. Analiza ilościowa publikacji naukowych w 5 wybranych czasopismach naukowych tematycznie związanych z inżynierią rolniczą (indeksowanych w bazie Web of Science) pozwoliła stwierdzić, że 236 artykułów naukowych z lat 1996-2015 było powiązane tematycznie z zastosowaniem ANN. Najwięcej publikacji odnotowano w czasopiśmie Computers and Electronics in Agriculture - 118 artykułów. W latach 2011-2015 występuje tendencja wzrostowa dynamiki publikowania prac naukowych poświęconych zastosowaniom ANN w inżynierii rolniczej. Można zatem wnioskować, że badania związane z zastosowaniem sztucznych sieci neuronowych w dyscyplinie inżynieria rolnicza będą kontynuowane, a ich zakres i liczba będzie się w dalszym ciągu zwiększać. Analiza tematyki najczęściej cytowanych publikacji z lat 2011-2015 w czasopiśmie Computers and Electronics in Agriculture wykazała, że dotyczą one zarówno zagadnień związanych z problemem klasyfikacji, jak i modelowania procesów i systemów. Należy przypuszczać, że tematyka związana z modelowaniem procesów suszarniczych oraz wykorzystaniem sieci neuronowych do analizy obrazu będzie się w kolejnych latach gwałtownie rozwijać.
Rocznik
Strony
15--25
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
  • Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow
autor
  • Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow
autor
  • Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow
autor
  • Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow
Bibliografia
  • Aghbashlo, M., Mobli, H., Rafiee, S., Madadlou, A. (2012). The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Computers and Electronics in Agriculture, 88, 32-43.
  • Boniecki, P., Koszela, K., Piekarska-Boniecka, H., Weres, J., Zaborowicz, M., Kujawa, S., Majewski, A., Raba, B. (2015). Neural identification of selected apple pests. Computers and Electronics in Agriculture, 110, 9-16.
  • Cobaner, M., Citakoglu, H., Kisi, O., Haktanir, T. (2014). Estimation of mean monthly air temperatures in Turkey. Computers and Electronics in Agriculture, 109, 71-79.
  • Engelbrecht A.P. (2007). Computational Intelligence. An Introduction. 2nd ed.. John Wiley & Sons Ltd. ISBN 978-0-470-03561-0.
  • Gocic, M., Motamedi, S., Shamshirband, S., Petkovic, D., Sudheer, C., Hashim, R., Arif, M. (2015). Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture, 113, 164-173.
  • Gocic, M., Trajkovic, S. (2011). Service-oriented approach for modeling and estimating reference evapotranspiration. Computers and Electronics in Agriculture, 79, 153-158.
  • Hagan M.T., Demuth H.B., Beale M.H., De Jesus O. (2014). Neural Network Design (2nd Edition). Martin Hagan. ISBN-10: 0-9717321-1-6. ISBN-13: 978-0-9717321-1-7.
  • Hendrawan, Y., Murase, H. (2011). Neural-Intelligent Water Drops algorithm to select relevant textural features for developing precision irrigation system using machine vision. Computers and Electronics in Agriculture, 77, 214-228.
  • Jain, L.C., Tan S.C., Lim. C.P. (2008). An Introduction to Computational Intelligence Paradigms. Studies in Computational Intelligence, 137, 1-23.
  • Kasabov, N.K. (1998). Foundations of neural networks, fuzzy systems, and knowledge engineering. Cambridge, Mass. MIT Press. ISBN 0-262-11212-4.
  • Kisi, O., Sanikhani, H., Zounemat-Kermani, M., Niazi, F. (2015). Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Computers and Electronics in Agriculture, 115, 66-77.
  • Marti, P., Shiri, J., Duran-Ros, M., Arbat, G., de Cartagena, F.R., Puig-Bargues, J. (2013a). Artificial neural networks vs. Gene Expression Programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents. Computers and Electronics in Agriculture, 99, 176-185.
  • Marti, P., Gasque, M., Gonzalez-Altozano, P. (2013b). An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data. Computers and Electronics in Agriculture, 91, 75-86.
  • Mohammadi, K., Shamshirband, S., Motamedi, S., Petkovic, D., Hashim, R., Gocic, M. (2015). Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214-225.
  • Mollazade, K., Omid, M., Arefi, A. (2012). Comparing data mining classifiers for grading raisins based on visual features. Computers and Electronics in Agriculture, 84, 124-131.
  • Nadimi, E.S., Jorgensen, R.N., Blanes-Vidal, V., Christensen, S. (2012). Monitoring and classifying animal behaviour using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks. Computers and Electronics in Agriculture, 82, 44-54.
  • Nazghelichi, T., Aghbashlo, M., Kianmehr, M.H., (2011). Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture, 75, 84-91.
  • Nourbakhsh, H., Emam-Djomeh, Z., Omid, M., Mirsaeedghazi, H., Moini, S. (2014). Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Computers and Electronics in Agriculture, 102, 1-9.
  • Shiri, J., Nazemi, A.H., Sadraddini, A.A., Landeras, G., Kisi, O., Fard, A.F., Marti, P. (2014). Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computers and Electronics in Agriculture, 108, 230-241.
  • Szczypinski, P.M., Klepaczko, A., Zapotoczny, P. (2015) Identifying barley varieties by computer vision. Computers and Electronics in Agriculture, 110, 1-8.
  • Teimouri, N., Omid, M., Mollazade, K., Rajabipour, A. (2014). A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow. Computers and Electronics in Agriculture, 105, 34-43.
  • Zurada J.M. (1992). Introduction to Artificial Neural Systems. West Publishing Co. St. Paul, MN, USA. ISBN 0-3 14-93391 -3.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39465d19-06fe-4a8c-9bb8-de90b9f891ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.