PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rola metali w rozwoju choroby Alzheimera i Parkinsona

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The role of metals in development Alzheimer's and Parkinson's diseases
Języki publikacji
PL
Abstrakty
EN
Neurodegenerative diseases are the consequence of progressive brain degeneration caused by the death of nerve cells. Many factors that influence the neurodegeneration development are still not fully known. A lot of studies indicate the contribution of metal ions in this process. Copper, zinc, and iron are trace elements essential for proper functioning of the body. They are part of many enzymes participating in the transmission of the nerve signals, electrons transport, neurotransmitters and nucleic acids synthesis, and oxygen storage. Disorder of metals homeostasis leads to the development of severe diseases and nervous system degenerations. An excess of copper and iron ions causes a significant increase in cellular oxidative stress. Metals catalyze the reactions of free radicals formation that destroy proteins, lipids, and nucleic acids. High concentration of copper and iron ions were found in the deposits of amyloidogenic proteins. Amyloid β (Alzheimer disease) and α synuclein (Parkinson disease) have ions binding chain structures. The metal-protein interaction increases oligomerization speed in vitro. A lot of evidence suggests that the disorder of Cu, Zn and Fe homeostasis accelerates the progress of brain neurodegeneration. Human organism contains many metals, which are not needed for the proper functioning of the body, e.g. aluminum. Al binds to nucleic acids causing an increase in cellular oxidative stress and initiating proteins oligomerization. The presence of aluminum is also considered to be disadvantageous for the nervous system. The lack of medicines for neurodegenerative diseases forces us to search for new therapies. The development of degenerations could be slowed down by chelators of toxic metals, but first, these diseases must be better understood. Adverse effects of high concentration of metal ions on brain functioning are not fully known. This knowledge is necessary to find effective drugs.
Rocznik
Strony
1--25
Opis fizyczny
Bibliogr. 109 poz., rys.
Twórcy
  • Uniwersytet Gdański, Wydział Chemii, Katedra Chemii Biomedycznej ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, Katedra Chemii Biomedycznej ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] M. Chin-Chan, J. Navarro-Yepes, B. Quintanilla-Vega, Front. Cell. Neurosci., 2015, 9, 1.
  • [2] V. Nicolia, M. Lucarelli, A. Fuso, Exp. Gerontol., 2015, 68, 8.
  • [3] Alzheimer’s Association, 2017 Alzheimer’s disease facts and figures, Alzheimer’s Dement., 2017, 13, 325.
  • [4] C.E. Cicero, G. Mostile, R. Vasta, V. Rapisarda, S.S. Signorelli, M. Ferrante, M. Zappia, A. Nicoletti, Environ. Res., 2017, 159, 82.
  • [5] N. Das, J. Raymick, S. Sarkar, Metab. Brain Dis., 2021, 36, 1627.
  • [6] M. Khalid, S. Hassani, M. Abdollahi, Curr. Opin. Toxicol., 2020, 20–21, 55.
  • [7] E. Radi, P. Formichi, C. Battisti, A. Federico, J. Alzheimers. Dis., 2014, 42, Suppl 3, S125.
  • [8] J. Mitra, V. Vasquez, P.M. Hegde, I. Boldogh, S. Mitra, T.A. Kent, K.S. Rao, M.L. Hegde, Neurol. Res. Ther., 2014, 1, 107.
  • [9] K. Wojtunik-Kulesza, A. Oniszczuk, M. Waksmundzka-Hajnos, Biomed. Pharmacother., 2019, 111, 1277.
  • [10] A. Alzheimer, Allg. Zeitschrife Psychiatr., 1907, 64, 146.
  • [11] N.J. Justice, Neurobiol. Stress, 2018, 8, 127.
  • [12] L. Wang, Y.-L. Yin, X.-Z. Liu, P. Shen, Y.-G. Zheng, X.-R. Lan, C.-B. Lu, J.-Z. Wang, Transl. Neurodegener. 2020, 9, 10.
  • [13] Y. Liu, M. Nguyen, A. Robert, B. Meunier, Acc. Chem. Res., 2019, 52, 2026.
  • [14] A. Mirza, A. King, C. Troakes, C. Exley, J. Trace Elem. Med. Biol., 2017, 40, 30.
  • [15] J.E. Morley, S.A. Farr, W.A. Banks, S.N. Johnson, K.A. Yamada, L. Xu, J. Alzheimers. Dis., 2010, 19, 441.
  • [16] M. del C. Cardenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz, B. Jimnez-Ramos, L. Gmez-Virgilio, G. Ramrez-Rodrguez, E. Vera- Arroyo, R. Fiorentino-Prez, U. Garca, J. Luna-Muoz, M. A. Meraz Ros, M. del C. Crdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz, B. Jimnez-Ramos, L. Gmez-Virgilio, G. Ramrez-Rodrguez, E. Vera- Arroyo, R. Fiorentino-Prez, U. Garca, et al., w: Neurochemistry, InTech, 2014.
  • [17] H. Zhang, Q. Ma, Y. Zhang, H. Xu, J. Neurochem., 2012, 120 Suppl, 9.
  • [18] H.M. Brothers, M.L. Gosztyla, S.R. Robinson, Front. Aging Neurosci., 2018, 10, 118.
  • [19] V.J. De-Paula, M. Radanovic, B.S. Diniz, O. V. Forlenza, Subcell. Biochem., 2012, 65, 329.
  • [20] G.K. Gouras, T.T. Olsson, O. Hansson, Neurotherapeutics, 2015, 12, 3.
  • [21] A. Sanabria-Castro, I. Alvarado-Echeverría, C. Monge-Bonilla, Ann. Neurosci., 2017, 24, 46.
  • [22] D. Suzhen, D. Yale, G. Feng, H. Yinghe, Z. Zheng, Transl. Neurodegener., 2012, 1, 18.
  • [23] T. Guo, W. Noble, D.P. Hanger, Acta Neuropathol., 2017, 133, 665.
  • [24] E.-M. Mandelkow, E. Mandelkow, Cold Spring Harb. Perspect. Med., 2012, 2, a006247.
  • [25] N.M. Kanaan, G.A. Morfini, N.E. LaPointe, G.F. Pigino, K.R. Patterson, Y. Song, A. Andreadis, Y. Fu, S.T. Brady, L.I. Binder, J. Neurosci., 2011, 31, 9858.
  • [26] B. Nizynski, W. Dzwolak, K. Nieznanski, Protein Sci., 2017, 26, 2126.
  • [27] M.A. Chabrier, D. Cheng, N.A. Castello, K.N. Green, F.M. LaFerla, Neurobiol. Dis., 2014, 64, 107.
  • [28] B. Politynska, The Clinical Presentation of Parkinson’s Disease and the Dyadic Relationship between Patients and Carers : a Neuropsychological Approach, Cambridge Scholar Publishing, Newcastle upon Tyne, 2013.
  • [29] L. V Kalia, A.E. Lang, Lancet (London, England), 2015, 386, 896.
  • [30] T. Gasser, T. Wichmann, M.R. DeLong, Parkinson Disease and Other Synucleinopathies, w: Neurobiol. Brain Disord., Elsevier, 2015: p. 281.
  • [31] R. Balestrino, A.H.V. Schapira, Eur. J. Neurol., 2020, 27, 27.
  • [32] W. Yang, J.L. Hamilton, C. Kopil, J.C. Beck, C.M. Tanner, R.L. Albin, E. Ray Dorsey, N. Dahodwala, I. Cintina, P. Hogan, T. Thompson, Npj Park. Dis. 2020, 61, 1.
  • [33] A.W. Willis, B.A. Evanoff, M. Lian, S.R. Criswell, B.A. Racette, Neuroepidemiology, 2010, 34, 143.
  • [34] A. Ben-Joseph, C.R. Marshall, A.J. Lees, A.J. Noyce, J. Parkinsons. Dis., 2020, 10, 31.
  • [35] D. Aarsland, L. Batzu, G.M. Halliday, G.J. Geurtsen, C. Ballard, K. Ray Chaudhuri, D. Weintraub, Nat. Rev. Dis. Prim. 2021 71, 1.
  • [36] M.G. Spillantini, R.A. Crowther, R. Jakes, M. Hasegawa, M. Goedert, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 6469.
  • [37] J.T. Bendor, T.P. Logan, R.H. Edwards, Neuron, 2013, 79, 1044.
  • [38] F.N. Emamzadeh, J. Res. Med. Sci., 2016, 21, 29.
  • [39] L. Breydo, J.W. Wu, V.N. Uversky, Biochim. Biophys. Acta - Mol. Basis Dis., 2012, 1822, 261.
  • [40] J.N. Rao, C.C. Jao, B.G. Hegde, R. Langen, T.S. Ulmer, J. Am. Chem. Soc., 2010, 32, 8657.
  • [41] M. Vilar, H.-T. Chou, T. Lührs, S.K. Maji, D. Riek-Loher, R. Verel, G. Manning, H. Stahlberg, R. Riek, T. Lü, S.K. Maji, D. Riek-Loher, R. Verel, G. Manning, H. Stahlberg, R. Riek, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 8637.
  • [42] S.J. Roeters, A. Iyer, G. Pletikapić, V. Kogan, V. Subramaniam, S. Woutersen, Sci. Rep., 2017, 7, 41051.
  • [43] L.C. Serpell, J. Berriman, R. Jakes, M. Goedert, R. a Crowther, R. Verel, G. Manning, H. Stahlberg, R. Riek, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 8637.
  • [44] A. Iyer, M.M.A.E. Claessens, Biochim. Biophys. Acta - Proteins Proteomics, 2019, 1867, 468.
  • [45] C. Liu, Y. Zhao, H. Xi, J. Jiang, Y. Yu, W. Dong, Front. Cell. Neurosci., 2021, 15, 633727.
  • [46] W. Ariesandi, C.F. Chang, T.E. Chen, Y.R. Chen, PLoS One, 2013, 8, e53487.
  • [47] T. Ganz, Physiol. Rev., 2013, 93, 1721.
  • [48] I.F. Scheiber, J.F.B. Mercer, R. Dringen, Prog. Neurobiol., 2014, 116, 33.
  • [49] S. Puig, L. Ramos-Alonso, A.M. Romero, M.T. Martínez-Pastor, Metallomics, 2017, 9, 1483.
  • [50] N. Abbaspour, R. Hurrell, R. Kelishadi, J. Res. Med. Sci., 2014, 19, 164.
  • [51] R.J. Ward, F.A. Zucca, J.H. Duyn, R.R. Crichton, L. Zecca, Lancet Neurol., 2014, 13, 1045.
  • [52] D.T. Dexter, A. Carayon, F. Javoy-Agid, Y. Agid, F.R. Wells, S.. Daniel, A.J. Lees, P. Jenner, C.D. Marsden, Brain, 1991, 114, 1953.
  • [53] D.J. Hare, K.L. Double, Brain, 2016, 139, 1026.
  • [54] H.J.H. Fenton, J. Chem. Soc., Trans., 1894, 65, 899.
  • [55] W.H. Koppenol, Redox Rep., 2001, 6, 229.
  • [56] H. Puzanowska-Tarasiewicz, L. Kuźmicka, M. Tarasiewicz, Bromat. Chem. Toksykol., 2010, 43, 9.
  • [57] Z. Cheng, Y. Li, Chem. Rev., 2007, 107, 749.
  • [58] T. Zhuang, H. Han, Z. Yang, Nutrients, 2014, 6, 3968.
  • [59] J. Everett, E. Cespedes, L.R. Shelford, C. Exley, J.F. Collingwood, J. Dobson, G. van der Laan, C.A. Jenkins, E. Arenholz, N.D. Telling, J. R. Soc. Interface, 2014, 11, 20140165.
  • [60] B. Liu, A. Moloney, S. Meehan, K. Morris, S.E. Thomas, L.C. Serpell, R. Hider, S.J. Marciniak,D.A. Lomas, D.C. Crowther, J. Biol. Chem., 2011, 286, 4248.
  • [61] M. Jouanne, S. Rault, A.S. Voisin-Chiret, Eur. J. Med. Chem., 2017, 139, 153.
  • [62] J.M. Oliveira, A.G. Henriques, F. Martins, S. Rebelo, O.A.B. Da Cruz E Silva, J. Alzheimer’s Dis., 2015, 45, 495.
  • [63] C. Guo, P. Wang, M.-L.L. Zhong, T. Wang, X.-S.S. Huang, J.-Y.Y. Li, Z.-Y.Y. Wang, Neurochem. Int., 2013, 62, 165.
  • [64] A. Yamamoto, R.W. Shin, K. Hasegawa, H. Naiki, H. Sato, F. Yoshimasu, T. Kitamoto, J. Neurochem., 2002, 82, 1137.
  • [65] S. Ahmadi, I.I. Ebralidze, Z. She, H.-B. Kraatz, Electrochim. Acta, 2017, 236, 384.
  • [66] Y. Peng, C. Wang, H.H. Xu, Y.-N. Liu, F. Zhou, J. Inorg. Biochem., 2010, 104, 365.
  • [67] I. Małuch, A. Walewska, E. Sikorska, A. Prahl, Postepy Biochem., 2016, 62, 472.
  • [68] S. Wichaiyo, P. Yatmark, R.E. Morales Vargas, P. Sanvarinda, S. Svasti, S. Fucharoen, N.P. Morales, Toxicol. Reports, 2015, 2, 415.
  • [69] L. Silvestri, A. Pagani, C. Camaschella, Blood, 2008, 111, 924.
  • [70] A. Anders, S. Gilbert, W. Garten, R. Postina, F. Fahrenholz, FASEB J., 2001, 15, 1837.
  • [71] E.M. Hwang, S.-K. Kim, J.-H. Sohn, J.Y. Lee, Y. Kim, Y.S. Kim, I. Mook-Jung, Biochem. Biophys. Res. Commun., 2006, 349, 654.
  • [72] J.T. Rogers, A.I. Bush, H.-H. Cho, D.H. Smith, A.M. Thomson, A.L. Friedlich, D.K. Lahiri, P.J. Leedman, X. Huang, C.M. Cahill, Biochem. Soc. Trans., 2008, 36, 1282.
  • [73] P. Lipiński, R. Starzyński, Postepy Hig. Med. Dosw., 2006, 60, 322.
  • [74] M. Araya, M. Olivares, F. Pizarro, Int. J. Environ. Heal., 2007, 1, 608.
  • [75] E. Madsen, J.D. Gitlin, Annu. Rev. Neurosci., 2007, 30, 317.
  • [76] A. Ahuja, K. Dev, R.S. Tanwar, K.K. Selwal, P.K. Tyagi, J. Trace Elem. Med. Biol., 2015, 29, 11.
  • [77] M.A. Lovell, J.D. Robertson, W.J. Teesdale, J.L. Campbell, W.R. Markesbery, J. Neurol. Sci., 1998, 158, 47.
  • [78] J. Mayes, C. Tinker-Mill, O. Kolosov, H. Zhang, B.J. Tabner, D. Allsop, J. Biol. Chem., 2014, 289, 12052.
  • [79] C. Hureau, P. Faller, Biochimie, 2009, 91, 1212.
  • [80] T. Kanti Das, M.R. Wati, K. Fatima-Shad, Arch. Neurosci., 2014, 2, e20078.
  • [81] M. Del Barrio, V. Borghesani, C. Hureau, P. Faller, w: Biometals in Neurodegenerative Diseases, Academic Press, 2017, p. 265.
  • [82] C.D. Syme, R.C. Nadal, S.E.J. Rigby, J.H. Viles, J. Biol. Chem., 2004, 279, 18169.
  • [83] Y.H. Hung, A.I. Bush, R.A. Cherny, JBIC J. Biol. Inorg. Chem., 2010, 15, 61.
  • [84] S. Li, K. Kerman, Anal. Chem., 2019, 91, 3810.
  • [85] P. Ranjan, D. Ghosh, D.S. Yarramala, S. Das, S.K. Maji, A. Kumar, Biochim. Biophys. Acta -Gen. Subj., 2017, 1861, 365.
  • [86] C.G. Dudzik, E.D. Walter, G.L. Millhauser, Biochemistry, 2011, 50, 1771.
  • [87] Y. Li, C. Yang, S. Wang, D. Yang, Y. Zhang, L. Xu, L. Ma, J. Zheng, R.B. Petersen, L. Zheng, H. Chen, K. Huang, Int. J. Biol. Macromol., 2020, 163, 562.
  • [88] V.N. Uversky, J. Li, A.L. Fink, J. Biol. Chem., 2001, 276, 44284.
  • [89] Y. Jinsmaa, P. Sullivan, D. Gross, A. Cooney, Y. Sharabi, D.S. Goldstein, Neurosci. Lett., 2014, 569, 27.
  • [90] H. Zhang, J.C. Rochet, L.A. Stanciu, Biochem. Biophys. Res. Commun., 2015, 464, 342.
  • [91] A. Permoda-Osip, J. Rybakowski, Farmakoter. w Psychiarii i Neurol., 2011, 2, 57.
  • [92] P.K. Stys, H. You, G.W. Zamponi, J. Physiol., 2012, 590, 1357.
  • [93] L. Prashanathm K.K. Kattapagari, R.T. Chitturi, V.R.R. Baddam, L.K Prasad, J. Dr. NTR Univ. Heal. Sci., 2015, 4, 75.
  • [94] M. Valko, K. Jomova, C.J. Rhodes, K. Kuča, K. Musílek, Arch Toxicol, 2016, 90, 1.
  • [95] C. Garza-Lombó, Y. Posadas, L. Quintanar, M.E. Gonsebatt, R. Franco, Antioxidants Redox Signal., 2018, 28, 1669.
  • [96] G.G. Moreira, J.S. Cristóvão, V.M. Torres, A.P. Carapeto, M.S. Rodrigues, I. Landrieu, C. Cordeiro, C.M. Gomes, Int. J. Mol. Sci., 2019, 20, 1.
  • [97] N.K. Isaev, E. V Stelmashook, E.E. Genrikhs, Rev. Neurosci., 2020, 31, 233.
  • [98] D. Mizuno, M. Kawahara, Int. J. Mol. Sci., 2013, 14, 22067.
  • [99] C. Exley, M.J. Mold, J. Biol. Inorg. Chem., 2019, 24, 1279.
  • [100] C.Y. Yuan, Y.J. Lee, G.S.W. Hsu, J. Biomed. Sci., 2012, 19, 51.
  • [101] C. Exley, Coord. Chem. Rev., 2012, 256, 2142.
  • [102] A. Santner, V.N. Uversky, Metallomics, 2010, 2, 378.
  • [103] C. Exley, M.J. Mold, Heliyon, 2020, 6, e03839.
  • [104] M. Shahnawaz Khan, S. Tabrez, M.T. Rehman, M.S. Alokail, Saudi J. Biol. Sci., 2020, 27, 2221.
  • [105] S. Maya, T. Prakash, K. Das Madhu, D. Goli, Biomed. Pharmacother., 2016, 83, 746.
  • [106] M. Kawahara, M. Kato-Negishi, Int. J. Alzheimers. Dis., 2011, 276393.
  • [107] K.D. Fasae, A.O. Abolaji, T.R. Faloye, A.Y. Odunsi, B.O. Oyetayo, J.I. Enya, J.A. Rotimi, R.O. Akinyemi, A.J. Whitworth, M. Aschner, J. Trace Elem. Med. Biol., 2021, 67, 126779.
  • [108] M. Tosato, V. Di Marco, Biomolecules, 2019, 9, 269.
  • [109] R.J. Ward, D.T. Dexter, R.R. Crichton, J. Trace Elem. Med. Biol., 2015, 31, 267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3946387d-cf17-4cef-9598-e28a2841ce0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.