PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rozdział 7. Budowa stacji monitorowania korozji wewnętrznych powierzchni rur wydobywczych

Identyfikatory
Warianty tytułu
EN
Chapter 7. Development of the optimal corrosion monitoring system for inner surface of production tubing
Języki publikacji
PL
Abstrakty
EN
A corrosion monitoring station was designed and built in the fracture gas recovery lines. The station is universal and can be used in conventional oil and gas installations. The device was tested both in laboratory and field conditions during operations in gas wells in Wysin (collection of flowback fluid, gas bed stimulation). In field conditions, the operating pressure of the station was from 3 to 40 bar with the effluent outflow of liquid and gas from the well. The proposed monitoring station allows for conducting corrosion (LPR, EIS, ER) and physicochemical (pH, red-ox potential) “on line" measurements during operation of gas wells. Tests carried out in the laboratory and field conditions have shown that the impedance method of measuring the polarization resistance is a sensitive method allowing both monitoring of the corrosion rate (including pitting corrosion) as well as conducting research in the field of material selection and selection of inhibitors.
Słowa kluczowe
Rocznik
Strony
78--158
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr., zdj.
Twórcy
Bibliografia
  • [1] Alonso V.: Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Applied Microbiology and Biotechnology 2008, vo1. 79, no. 1, s. 157-164.
  • [2] Attwood P.A., Fear L., Graham J., Gifford A.P.: The Application of Risk Based Inspection in Major Oil Field Operations. Mat. Konf. Int. Symp., wrzesień 1997, Dubaj, Zjednoczone Emiraty Arabskie. NACE International, Houston, USA, s. 249.
  • [3] Banaś J., Lelek-Borkowska U., Mazurkiewicz B., Solarski W.: Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water. Electrochimica Acta 2007, vol. 52, issue 18. s 5704-5714. D OI: 10.1016/j.electacta.2007.01.086.
  • [4] Banaś J., Mazurkiewicz B., Solarski W., Bisztyga M., Lelek-Borkowska U.: Badania korozyjne w zamkniętym systemie H2O-CO2, problem stabilności parametrów fizykochemicznych. Ochrona przed Korozją 2015, vol. 58, nr 11, s. 388-391. DOI: 10.15199/40.2015.11.5.
  • [5] Banaś J., Mazurkiewicz B., Solarski W., Palumbo G., Lelek-Borkowska U., Ura-Bińczyk E., Mizera J.: Monitorowanie korozji wewnętrznych powierzchni rur wydobywczych w odwiertach gazu łupkowego. Ochrona przed Korozją 2016, vol. 59, nr 10, s. 372-377.
  • [6] Ben-Yoav H., Freeman A., Sternheim M., Shacham-Diamand Y.: An electrochemical impedance model for integrated bacterial biofilms. Electrochimica Acta 2011, vol. 56, issue 23, s. 7780-7786. DOI: 10.1016/j.electacta.2010.12.02 5.
  • [7] Brouwer R.C.: Corrosion Management in PDO. Mat. Konf. 8th Middle East Corrosion Conference, maj 1998, Manama, Bahrain. The Bahrain Soc. of Engineers & NACE International 1998, Houston, USA, s. 239.
  • [8] Cloete T.E.: Biofouling control in industrial water systems: What we know and what we need to know. Materials and Corrosion 2003, vol. 54, issue 7, s. 520-526. DOI: 10.1002/maco.200390115.
  • [9] Dawson J., Bruce K., John D.G.: Corrosion risk assessment and safety management for offshore processing facilities. Raport technologiczny - Offshore Technology Report 1999/064, Capis House, i Echo Street, M1 7DP, UK.
  • [10] De Bruyn H.J.: Current corrosion monitoring trends in the petrochemical industry. International Journal of Pressure Vessels and Piping 1996, vol. 66, issue 1-3, s. 293-303. DOI: 0.1016/0308-0161(95)00103-4.
  • [11] Desjardins G.: Corrosion rate and severity results from inline inspection Data. Mat. konf. CORROSION 2001, March 2001, Houston, USA. NACE International, Houston, USA, Paper No 624.
  • [12] De Waard C., Lotz U., Dugstad A.: Influence of Liquid Flow Velocity on CO2 Corrosion: A Semi-empirical Model. Mat. konf. Corrosion 1995, listopad 1995, Baltimore, USA. NACE International, Houston, USA, Paper No. 128.
  • [13] Dominguez-Benetton X., Castaneda Lopez H.: SRB-Biofilm Growth and Influence in Corrosion Monitoring by Electrochemical Impedance Spectroscopy. Mat. konf. Corrosion 2005, kwiecień 2005, Denver, USA. NACE International, Houston, USA, Paper No. 05486.
  • [14] Dubiel M., Hsu C.H., Chien C.C., Mansfeld F., Newman D.K.: Microbial iron respiration can protect steel from corrosion. Applied and Environmental Microbiology 2002, vol. 68, issue 3, s. 1440-1445.
  • [15] Daumas S., Massiani Y., Crousier J.: Microbiological battery induced by sulphate-reducing bacteria. Corrosion Science 1988, vol. 28, no 11, s. 1041-1050.
  • [16] Edwards J.D., Sydberger T., Mork K.J.: Reliability Based Design of CO2 - Corrosion Control. Mat. konf. Corrosion, marzec 1996, Denver, USA. NACE International, Houston, USA, Paper No. 29.
  • [17] Googan C., Ashworth V.: Pipeline Corrosion Risk Management. Mat. konf. 8th Middle East Corrosion Conference, maj 1998, Manama, Bahrain. The Bahrain Soc. of Engineers & NACE International, Houston, USA, s. 623-636.
  • [18] Hemmingsen T., Lima H.: Electrochemical and optical studies of sulphide film formation on carbon steel. Electrochimica Acta 1998, vol. 43, no. 1-2, s. 35-40.
  • [19] Hilbert L.R.: Mikrobiel osion af stal ved sulfatreducerende bakterier. Master Thesis, The Technical University of Denmark, 1995.
  • [20] Instrukcja branżowa. American Petroleum Institute Recomended Practice RP 580. Application of Risk-based Inspection Methodology in the Production in Petroleum Industry. 3rd edition, 2016, American Petroleum Institute, Washington DC, USA.
  • [21] Instrukcja branżowa DNV-RP-GI01, Risk Based Inspection of Offshore Topsides Static Mechanical Equipment. Det Norske Veritas, Veritasveien 1, 1363 Hovik, Norway.
  • [22] John G., Attwood P., Rothwell N.: Advances in Integrated Database Systems for Corrosion Management of Oil & Gas Production. Mat. konf. Corrosion, kwiecień 1999, San Antonio, USA. NACE International, Houston, USA, Paper No. 249.
  • [23] Kakooei S., Che Ismail M., Ariwahjoedi B.: Mechanisms of Microbiologically Influenced Corrosion: A Review. World Applied Sciences Journa12012, vol. 17, issue 4, s. 524-531.
  • [24] Kasahara K., Kajiyama F.: Role of Sulfate Reducing Bacteria in the Localized Corrosion of Buried Pipes, in Biologically Induced Corrosion. [W:] Dexter S.C. (ed.): Biologically Induced Corrosion. Mat. konf. International Conference on Biologically Induced Corrosion, czerwiec 1985, Gaithersburg. NACE International 1986, Houston, USA, s. 171-177.
  • [25] Kearns J.R.: Micrabiologically influenced corrosion testing. ASTM American Society for Testing and Materials 1994, Philadelphia, USA, STP 1232, s. 141.
  • [26] Keresztes Zs., Telegdi J., Beczner J., Kalman E.: The influence of biocides on the microbiologically influenced corrosion of mild steel and brass. Electrochimica Acta 1998, vol. 43, issue 1-2, s. 77-85.
  • [27] Kyung-Ran P., Lee H.-J., Lee H.-K., Kim Y.-K., Oh Y.-S., Choi S.-Ch.: Involvement of Organic Acid During Corrosion of Iron Coupon by Desulfovibrio desulfurican. Journal of Microbiological Biotechnology 2003, vol. 13, issue 6, s. 937-941.
  • [28] Lee W., Lewandowski Z., Nielsen P.H., Hamilton W.A.: Role of Sulfate- reducing Bacteria in Corrosion of Mild Steel: a Review. Biofouling 1995, vol. 8, s. 165-194.
  • [29] Lewandowski Z., Dickson W., Lee W.: Electrochemical interactions of biofilms with metal surfaces. Water Science and Technology 1997, vol. 36, issue 1, s. 295-302.
  • [30] Licina G.J., Nekoksa G., Howard R.L.: An electrochemical method for on- line monitoring of biofilm activity in cooling water using the BIOGEORGE probe. [W:] Microbiologically Influenced Corrosion Testing. ASTM Publications STP 1232, American Society for Testing and Materials 1994, Philadelphia, USA, s. 118-127.
  • [31] Mansfeld F.: The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition - a review. Materials and Corrosion 2003, vol. 54, no. 7, s. 489-502, DOI: 10.1002/maco.200390111.
  • [32] Miller J.D.A.: Metals w Microbial-Biodeterioration. [W:] A.H. Rose (ed.): Academic Press. New York 1981, s. 149-202.
  • [33] Milliams D.: Corrosion Management. Mat. konf. 12th Int. Corr. Congress Corrosion Control for Low Cost Reliability, 19-24 września 1993, Houston, USA. NACE International, Houston, USA 1993, s. 2420.
  • [34] Muhlbauer W.K.: Pipeline risk management manual, ideas, techniques, and resources. 3rd edition, Gulf Professional Publishing, Houston, USA 2004, 395 s.
  • [35] Nielsen L.V., Hilbert L.R.: Microbial Corrosion of Carbon Steel by Sulfate-Reducing Bacteria: Electrochemical and Mechanistic Approach, Aspects of Microbially Induced Corrosion. Mat. konf. EUROCORR'96 and the EFC Working Party on Microbial Corrosion, September 1994, Nice, France. Thierry, D., EFC The Institute of Materials 1997, Publication No. 22.
  • [36] Newman R.C., Webster B.J., Kelly R.G.: The Electrochemistry of SRB Corrosion and Related Inorganic Phenomena. ISIJ International 1991, vol. 31, no. 2, s. 201-209. DOI: 10.2355/isijinternationa1.31.201.
  • [37] Norma American Petroleum Institute API 570 Piping Inspection Code: In Service Inspection, Rating, Repair, and Alteration of Piping Systems, !003, American Petroleum Institute 1220L Street, NW, Washington DC, 20005-4070 USA.
  • [38] Norma American Petroleum Institute API 580 Standard, Risk Based Inspection, American Petroleum Institute 1220L Street, NW, Washington DC, 20005-4070 USA.
  • [39] Norma American Petroleum Institute API 581, Risk Based Inspection Technology, American Petroleum Institute 1220L Street, NW, Washington DC, 20005-4070 USA.
  • [40] Norma Canadian Standards Association CSA-Z662-07 Oil and Gas Pipeline Systems, Annex O, Reliability Based Methodology, Canadian Standards Association, Mississauga, ON L4W 5N6 Canada.
  • [41] Nyborg R.: Guidelines for prediction of CO2 corrosion in oil and gas production systems. Raport techniczny Report No IFE/KR/E - 2009/003, Institutt for Energiteknik, Instituttveien 18, 2007 Kjeller, Norway. https://www ife.no/en/publications/2009/matkor/prediction (dostęp: 22.05.2018).
  • [42] Oliver L.M., Dunlop P.S.M., Byrne J.A., Blair LS., Boyle M., McGuigan K.G.: Impedimetric sensor for monitoring the growth of Staphylococcus epidermidis. Mat. konf. 28th IEEE EMBS Annual International Conference, August 2006, New York City, USA.
  • [43] Palumbo G., Banaś J.: Inhibition effect of guar gum on the corrosion behaviour of carbon steel (K-55) in fracturing fluid. Solid State Phenomena 2015, vol. 227, s. 59-62. DOI: 10.4028/www.scientific.net/SSP.227.59.
  • [44] Palumbo G., Banaś J., Bałkowiec A., Mizera J., Lelek-Borkowska U.: Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid. Journal of Solid State Electrochemistry 2014, vol. 18, no. 11, s. 2933-2945. DOI: 10.1007/s10008-014-2430-2.
  • [45] Papavinasam S.: Corrosion Control in the Oil and gas Industry. 2014, Elsevier, Boston, USA, 992 s.
  • [46] Patel Ch., Dunn S., Takhistov P.: Combined Spectrophotometric - Electrochemical Impedance Imaging System for Biofilm Research. Journal of the Association for Laboratory Automation 2005, vol. 10, no. 1, s. 16-23. DOI: 10.1016/j.jala.2004.08.013.
  • [47] Piasecki T., Guła G., Nitsch K., Waszczuk K., Drulis-Kawa Z., Gotszalk T.: Evaluation of Pseudomonas aeruginosa biofilm formation using Quartz Tuning Forks as impedance sensors. Sensors and Actuators B: Chemical 2013, vol. 189, s. 60-65. DOI: 10.1016/j.snb.2012.12.087.
  • [48] Roberge P.R.: Handbook of Corrosion Engineering. 2°a Edition, McGraw- Hill 2012, New York, 725 s.
  • [49] Sand W.: Microbial life in geothermal waters. Geothermics 2003, vol. 32, no. 4, s. 655-667, DOI: 10.1016/50375-6505(03)00058-0.
  • [50] Shoesmith D.W., Taylor P., Bailey M.G., Owen D.G.: The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21 °C. Journal of the Electrochemical Society 1980, vol. 127, no. 5, s. 1007-1015. DOI: 10.1149/1.2129808.
  • [51] Sontvedt T., Halvorsen A.M.: CO2 Corrosion Model for Carbon Steel Including a Wall Shear Stress Model for Multiphase Flow and Limits for Production Rate to Avoid Mesa Attack. Paper No. 32. Mat. konf. Corrosion'98, marzec 1998, San Diego, USA. NACE International, Houston, USA.
  • [52] Stern M., Geary A.L.: Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society 1957, vol. 104, no. 1, s. 56-63, DOI: 10.1149/ 1.2428496.
  • [53] Sun W., Nesić S.: A mechanistic model of H2S corrosion of mild steel. Mat. konf. Corrosion 2007, marzec 2007, Nashville, USA. NACE – International Corrosion Conference Series, Paper No. 07655.
  • [54] Tischuk J.L.: Risk Based Inspection Implementation for A Pipeline Network With Limited Data. 2007. Mat. konf. 2nd Pipeline Technology Conference, kwiecień 2007, Hannover, Germany.
  • [55] Tribollet E.: Electrochemical sensors for biofilm and biocorrosion. Materials and Corrosion 2003, vol. 54, no. 7, s. 527-534. DOI: 10.1002/ maco.200390116.
  • [56] Venzlaff H., Enning D., Srinivasan J., Mayrhofer K.J.J., Hassel A.W., Widdel E, Stratmann M.: Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion Science 2013, vol. 66, s. 88-96. DOI: 10.1016/j.corsci.2012.09.006.
  • [57] Videla H.A.: Prevention and control of biocorrosion. International Biodeterioration & Biodegradation 2002, vol. 49, no. 4, s. 259-270. DOI: 10.1016/S0964-8305(02)00053-7.
  • [58] Videla H.A., Herrera L.K.: Microbiologically influenced corrosion: looking to the future. International Microbiology 2005, vol. 8, no. 3, s. 169-180, http://revistes.iec.cat/index.php/IMlarticle/viewFile/9523/9519, (dostęp: 28.05.2018).
  • [59] Videla H.A., Herrera L.K., Edyvean R.G.: An updated overview of SRB induced corrosion and protection of carbon steel. Paper No. 05488. Mat. konf. Corrosion 2005, kwiecień 2005, Denver, USA. NACE International, Houston, USA.
  • [60] Videla H.A., Swords C.L., Edyvean R.G.: Corrosion products and biofilm interaction in the SRB influenced corrosion of steel. Paper No. 02557. Mat. konf. Corrosion 2002, kwiecień 2002, Denver, USA. NACE International, Houston, USA.
  • [61] Więckowski A., Ghali E., Szklarczyk M., Sobkowski J.: The behaviour of iron electrode in CO2 - saturated neutral electrolyte-I. Electrochemical study. Electrochimica Acta 1983, vol. 28, no. 11, s. 1619-1626. DOI: 10.1016/0013-4686(83)85226-8.
  • [62] Zuo R., Kus E., Mansfeld F., Wood Th.K.: The importance of live biofilms in corrosion protection. Corrosion Science 2005, vol. 47, no. 2, s. 279-287. DOI: 10.1016/j.corsci.2004.09.006.
Uwagi
Opracowanie optymalnych koncepcji zagospodarowania złóż niekonwencjonalnych = Optimum concepts of unconventional reservoir development : praca zbiorowa pod red. Jana Lubasia. T. 2
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3945b08c-b3ef-4a3c-abc7-34aa3a36d082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.