Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Opposing fow junctions are considered as important elements in thermal and hydraulic equipment. This study numerically investigates the efects of angles and junction radii on coherent fow structures at opposing fow junctions with subcritical conditions. Hence, the three-dimensional unsteady Reynolds-averaged Navier–Stokes equations are solved with the k–ε turbulence model on a non-staggered grid using the indirect addressing treatment. After the verifcation of the numerical model, several numerical simulations are conducted for angles 35°, 40°, 45°, 50°, 60°, 70°, 80°, and 90° with diferent upstream Froude numbers and junction radii. The streamwise-oriented vortical cells only elongate into the branch channel of the opposing fow junction with angle 90°. By decreasing the angle between the main channel and confuent tributary, these cells decay in the main channel width, and one of the separation zones is gradually eliminated, as that does not form in the opposing fow junctions with angle 40°. The enhancement of junction radii decreases the dimensions of the separation and stagnation zones. Numerical simulation results of a curved-edge opposing fow junction with angle 80° indicate that any of the streamwise-oriented vortical cells in the main channel and separations zones in the branch channel are not formed. In such a condition, three vortical cells formed along the branch without decay, two cells are located near the side wall, and another cell is near the free surface.
Wydawca
Czasopismo
Rocznik
Tom
Strony
795--809
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
- Department of Civil Engineering, Razi University, Kermanshah, Iran
autor
- Department of Civil Engineering, Razi University, Kermanshah, Iran
Bibliografia
- 1. Andreussi T, Galletti C, Mauri R, Camarri S, Salvetti MV (2015) Flow regimes in T-shaped micro-mixers. Comput Chem Eng 76:150–159
- 2. Arega F, Lee JH, Tang HW (2008) Hydraulic jet control for river junction design of Yuen Long Bypass Floodway, Hong Kong. J Hydraul Eng 134:23–33
- 3. Ashmore P, Parker G (1983) Confluence scour in coarse braided streams. Water Resour Res 19(2):392–402
- 4. Ashmore PE, Ferguson RI, Prestegaard KL, Ashworth PJ, Paola C (1992) Secondary flow in anabranch confluences of a braided, gravel-bed stream. Earth Surf Process Landf 17(3):299–311
- 5. Behrangi A, Borghei S, Daemi A (2005) Sub-critical flow in open channel junction. In: Yazdandoost F, Attari J (eds) Hydraulics of dams and river structures. A.A. Balkema, Leiden, pp 522–533
- 6. Best JF (1985) Dynamics and sediment transport at river channel confluences. Ph.D. thesis, Univ. of London, London
- 7. Best JL (1988) Sediment transport and bed morphology at river channel confluences. Sedimentology 35(3):481–498
- 8. Best JL, Reid I (1984) Separation zone at open-channel junctions. J Hydraul Eng 110(11):1588–1594
- 9. Bialik RJ, Karpiński M, Rajwa A, Luks B, Rowiński PM (2014) Bedform characteristics in natural and regulated channels: a comparative field study on the Wilga River, Poland. Acta Geophys 62(6):1413–1434
- 10. Borghei SM, Sahebari AJ (2010) Local scour at open-channel junctions. J Hydraul Res 48(4):538–542
- 11. Chen HC, Patel VC (1988) Near-wall turbulence models for complex flows including separation. AIAA J 26(6):641–648
- 12. Constantinescu G, Miyawaki S, Rhoads B, Sukhodolov A, Kirkil G (2011) Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: Insight provided by an eddy-resolving numerical simulation. Water Resour Res 47(5):W05507
- 13. Constantinescu G, Miyawaki S, Rhoads B, Sukhodolov A (2012) Numerical analysis of the effect of momentum ratio on the dynamics and sediment entrainment capacity of coherent flow structures at a stream confluence. J Geophys Res Earth Surf. https://doi.org/10.1029/2012JF002452
- 14. Constantinescu G, Miyawaki S, Rhoads B, Sukhodolov A (2014) Numerical evaluation of the effects of planform geometry and inflow conditions on flow, turbulence structure, and bed shear velocity at a stream confluence with a concordant bed. J Geophys Res Earth Surf 119(10):2079–2097
- 15. Constantinescu G, Miyawaki S, Rhoads B, Sukhodolov A (2016) Influence of planform geometry and momentum ratio on thermal mixing at a stream confluence with a concordant bed. Environ Fluid Mech 16(4):845–873
- 16. Fani A, Camarri S, Salvetti MV (2013) Investigation of the steady engulfment regime in a three-dimensional T-mixer. Phys Fluids 25(6):064102
- 17. Frizzell CS, Khan AA, Werth DE (2008) Numerical simulation of equal and opposing subcritical flow junctions. J Hydraul Eng 134(2):267–273
- 18. Ghobadian R, Bajestan MS (2007) Investigation of sediment patterns at river confluence. J Appl Sci 7(10):1372–1380
- 19. Ghobadian R, Basiri M (2016) The effect of downstream curved edge on local scouring at 60-degree open channel junction using SSIIM1 model. Ain Shams Eng J 7(2):543–552
- 20. Hager WH (1989) Transitional flow in channel junctions. J Hydraul Eng 115(2):243–259
- 21. Javan M, Mahmodinia S, Hasani H (2017) Development and validation of a Lagrangian method for 3D turbulent flows with curvilinear free-surface. Environ Fluid Mech 17(6):1153–1170
- 22. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94
- 23. Mahmodinia S, Javan M (2018) Three-dimensional features in non-equal and opposing flow junctions. Acta Mech 229:4357–4374
- 24. Mignot E, Rivière N, Perkins R, Paquier A (2008) Flow patterns in a four-branch junction with supercritical flow. J Hydraul Eng 134(6):701–713
- 25. Mohamadi S, Bejestan MS, Ghobadian R (2013) Local scour at curved edge of open-channel junctions. Casp J Appl Sci Res 2(4):33–40
- 26. Mohammadiun S, SalehiNeyshabouri S, Naser G, Parhizkar H, Vahabi H (2015) Effects of open-channel geometry on flow pattern in a 90° junction. Iran J Sci Technol Trans Civ Eng 39(2):559–573
- 27. Nones M (2020) On the main components of landscape evolution modelling of river systems. Acta Geophys 68:459–475
- 28. Poole RJ, Alfateh M, Gauntlett AP (2013) Bifurcation in a T-channel junction: effects of aspect ratio and shear-thinning. Chem Eng Sci 104:839–848
- 29. Rhoads BL, Sukhodolov AN (2001) Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities. Water Resour Res 37(9):2393–2410
- 30. Rhoads BL, Sukhodolov A (2008) Lateral momentum flux and the spatial evolution of flow within a confluence mixing interface. Water Resour Res. https://doi.org/10.1029/2007WR006634
- 31. Roy AG, Bergeron N (1990) Flow and particle paths at a natural river confluence with coarse bed material. Geomorphology 3(2):99–112
- 32. Roy AG, Roy R, Bergeron N (1988) Hydraulic geometry and changes in flow velocity at a river confluence with coarse bed material. Earth Surf Process Landf 13(7):583–598
- 33. Schindfessel L, Creëlle S, De Mulder T (2017) How different cross-sectional shapes influence the separation zone of an open-channel confluence. J Hydraul Eng 143(9):04017036
- 34. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Pearson Education, Harlow
- 35. Webber NB, Greated CA (1966) An investigation of flow behavior at the junction of rectangular channels. Proc Inst Civ Eng 34(3):321–334
- 36. Zhang JX, Bai YQ, Kang J, Wu X (2017) Failure analysis and erosion prediction of tee junction in fracturing operation. J Loss Prev Process Ind 46:94–107
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39431ae1-853d-41b5-b399-fed98c55d06b