PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Plastic Deformation on CCT-Diagram of Multi-Phase Forging Steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the influence of plastic deformation and cooling conditions on microstructure, hardness and a shape of CCT-diagram (Continuous Cooling Transformations) of newly developed multi-phase steel assigned for die forgings, combining high strength, crack resistance and fatigue strength. The diagrams of undeformed and plastically deformed supercooled austenite transformations of steel, containing 0.175% C, 1.87% Mn, 1.0% Si, 0.22% Mo as well as Ti and V microadditions in concentration of 0.031% and 0.022%, respectively, were determined. Dilatometric tests were performed using a Bahr 805 A/D dilatometer. Specimens were austenitized at the temperature of 1000°C for 300 s and successively cooled to ambient temperature at a rate ranging from 60°C/s to 0.1°C/s. In order to determine the influence of plastic deformation on the shape of CCT-diagram, samples were deformed at the temperature of 1000°C, using a 50% degree of deformation, and then cooled in the same rate range as the samples which were not plastically deformed. The tests showed the following temperature results: Ac3 = 960°C, Ac1 = 832°C and a relatively low MS temperature equal 330°C. Plastic deformation of steel at the temperature of 1000°C, prior to the beginning of phase transformations, leads to significant increase in the ferritic transformation range, shifting the temperature of the beginning of this transformation to higher temperature in the entire range of cooling rates. It was also revealed that the specimens, plastically deformed at the austenitizing temperature, exhibit higher hardness compared to the specimens which were not plastically deformed, cooled with the same cooling rate. The elaborated CCT-diagrams of supercooled austenite transformations constitute the basis for correct development of the conditions of thermo-mechanical treatment of forgings from the tested steel.
Twórcy
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Escobar J.D., Poplawsky J.D., Faria G.A., Rodriguez J., Oliveira J.P., Salvador C.A.F., Mei P.R., Babu S.S., Ramirez A.J. Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: segregation, partitioning and carbide precipitation. Materials. 2018;140:95–105.
  • 2. Calderón I.D., Calvillo R., Lara A. Effect of microstructure on fatigue behavior of advanced high strength steels produced by quenching and partitioning and the role of retained austenite. Materials Science & Engineering A. 2015;641:215–224.
  • 3. Conde F.F., Escobar J.D., Oliveira J.P., Jardini A.L., Bose Filho W.W., Avila J.A. Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel. Additive Manufacturing. 2019;29:1–8.
  • 4. Sugimoto K., Hojo T., Kobayashi J. Critical assessment of TRIP-aided bainitic ferrite steels. Materials Science and Technology. 2017;33(17):2005–2009.
  • 5. Sugimoto K., Hojo T., Mizuno Y. Torsional fatigue strength of newly developed case hardening TRIP- aided steel. Metals. 2017;7(375):1–13.
  • 6. Keul C., Wirths V., Bleck W. New bainitic steel for forgings. Archives of Civil and Mechanical Engineering. 2012;12:119–125.
  • 7. Zhao P., Cheng C., Gao G., Hiu W., Misra R.D.K., Bai B., Weng Y. The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels. Materials Science & Engineering A. 2016;650:438–444.
  • 8. Guhui G., Baoxiang Z., Cheng C., Ping Z. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning- -tempering process. International Journal of Fatigue. 2016;92:203–210.
  • 9. Kuziak R., Bołd T., Cheng Y. Microstructure control of ferrite-pearlite high strength low alloy steels utilizing microalloying additions. Journal of Materials Processing Technology. 1995;53:255–262.
  • 10. Adamczyk J., Opiela M. Engineering of forged products of microlloyed constructional steels. Journal of Achievements in Materials and Manufacturing Engineering. 2006;15:153–158.
  • 11. Adamczyk J., Kalinowska-Ozgowicz E., Ozgowicz W., Wusatowski R. Interaction of carbonitrides V(C,N) undissolved in austenite on the structure and mechanical properties of microalloyed V-N steels. Journal of Materials Processing Technology. 1995;54:23–32.
  • 12. Skubisz P., Adrian H., Sińczak J. Controlled cooling of drop forged microalloyed-steel automotive crankshaft. Archives of Metallurgy and Materials. 2011;56:93–107.
  • 13. Kuziak R., Pidvysotskyy V., Węglarczyk S., Pietrzyk M. Bainitic steels as alternative for conventional carbon-manganese steels in manufacturing of fasteners - simulation of production chain. Computer Methods and Materials Science. 2011;11:443–462.
  • 14. Gramlich A., Emmrich R., Bleck W. Austenite reversion tempering-annealing of 4 wt.% manganese steels for automotive forging application. Metals. 2019;9(575):1–10.
  • 15. Li Q., Huang X., Huang W. Strain hardening behavior and deformation characteristic of multiphase microstructure in a medium-carbon quenching and partitioning bainitic steel. Materials Science & Engineering A. 2017;707:199–206.
  • 16. Siodlak D., Lotter U., Kawalla R., Schwich V. Modelling of the mechanical properties of low alloyed multiphase steels with retained austenite taking into account strain-induced transformation. Steel Research International. 2008;79:776–783.
  • 17. Grajcar A., Zalecki W., Burian W., Kozłowska A. Phase equilibrium and austenite decomposition in advanced high-strength medium-Mn bainitic steels. Metals. 2016;6(10):1–14.
  • 18. Kawulok R., Schindler I., Kawulok P., Rusz P., Opéla P., Solowski S., Čmiel K.M. Effect of deformation on the continuous cooling transformation (CCT) diagram of steel 32CrB4. Metalurgija. 2015;53(3): 473–476.
  • 19. Grajcar A. & Opiela M. Diagrams of supercooled austenite transformations of low-carbon and medium- carbon TRIP-steels. Archives of Materials Science and Engineering. 2008;32:13–16.
  • 20. Grajcar A., & Opiela M. Influence of plastic deformation on CCT-diagrams of low-carbon and medium-carbon TRIP-steels. Journal of Achievements in Materials and Manufacturing Engineering. 2008;29(1):71–78.
  • 21. Bräutigam-Matus K., Altiminaro G., Salinas A., Flores A., Goodwins F. Experimental determination of continuous cooling transformation (CCT) diagrams for dual-phase steels from the intercritical temperature range. Metals. 2018;8(9):1–16.
  • 22. Grajcar A., Kwasny W., Zalecki W. Microstructure- property relationships in TRIP aided medium-C bainitic steel with lamellar retained austenite. Materials Science and Technology. 2015;31(7):781–794.
  • 23. ASTM A1033-04. In standard practice for quantitative measurement and reporting of hypoeutectoid carbon and low-alloy steel phase transformations. ASTM International: West Conshohocken, USA.
  • 24. Song W., Lei M., Wan M., Huang C. Continuous cooling transformation behavior and bainite transformation kinetic of 23CrNi3Mo carburized steel. Metals. 2021;11(1):1–12.
  • 25. Qiao Z.X., Liu Y.C., Yu L.M., Gao Z.M. Formation mechanism of granular bainite in a 30CRNi3MoV steel. Journal of Alloys Compounds. 2009;475(1–2):560–564.
  • 26. Zhao H. & Palmiere E.J. Influence of cooling rate on the grain-refining effect of austenite deformation in a HSLA steel. Materials Characterization. 2019;158:1–12.
  • 27. Kozeschnik E., Bhadeshia H.K.D.H. Influence of silicon on cementite precipitation in steels. Materials Science and Technology. 2008;24(3):343–347.
  • 28. Suzuki T., Ono Y., Miyamoto G., Furuhara T. Effects of Si and Cr on bainite microstructure of medium carbon steels. ISIJ International. 2010;50:1476–1482.
  • 29. Chen Z., Gu J., Ham L. Bainite transformation characteristics of high-Si hypereutectoid bearing steel. Metallography, Microstructure and Analysis. 2018;7:3–10.
  • 30. Caballero F.G., Bhadeshia H.K.D.H. Very strong bainite. Current Opinion in Solid State & Materials Science. 2004;8:251–257.
  • 31. Grajcar A., Morawiec M., Zalecki W. Austenite decomposition and precipitation behavior of plastically deformed low-Si microalloyed steel. Metals. 2018;8:1028.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39404b46-6311-4628-b993-1936e6018863
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.