PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical Modelling of the Production of an Alloy Vapour Source for the Synthesis of Dielectric Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports the results of a physical modelling study of the production of a hypereutectic aluminium alloy to be used formaking an alloy vapour source for operation in the magnetron. Within the study, targets from a hypereutectic aluminium-silicon alloy were made in laboratory conditions. Thus obtained material was subjected to heat treatment, porosity analysis, and the assessment of the microstructure and fitness for being used in the magnetron. The process of melting the hypereutectic Al-Si alloy was carried out at the Department of Foundry of the Czestochowa University of Technology. The investigation into the production of the alloy vapour source for the synthesis of the dielectric material from the hypereutectic aluminium alloy has confirmed.
Twórcy
autor
  • Czestochowa Technical University, Department of Metallurgy and Technology of Metals, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  • Czestochowa Technical University, Department of Metallurgy and Technology of Metals, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
  • National Centre for Nuclear Research, Department of Plasma and Ion Technologies, 7 Andrzeja Sołtana Str., 05-400 Otwock, Poland
Bibliografia
  • [1] S. M. Tediren, Aspects for the design of sputtering systems, Vacuum 33, 4, 215-219 (1983).
  • [2] W. H. Class, Performance characteristics of a new high rate magnetron sputtering cathode, Thin Solid Films 107, 379-385 (1983).
  • [3] W. Posadowski, Low pressure magnetron sputtering using ionized, sputtered species, Surface and Coatings Technology 49, 290-292 (1991).
  • [4] P. J. Kelly, R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56, 159-172 (2000).
  • [5] J. A. Thornton, Magnetron sputtering: basic physics and application to cylindrical magnetrons, Journal Vac. Sci. Technol. 15, 171-177 (1978).
  • [6] Z. Cao, Thin film growth for thermally unstable noble-metal nitrides by reactive magnetron sputtering, Thin Film Growth, Physics, Materials Science and Applications pp. 185-210, 2011, ISBN: 9780857093295.
  • [7] J. Musil, G. Remnev, V. Legostaev, V. Uglov, A. Lebedynsky, A. Lauk, J. Prochazka, S. Haviarm, E. Smolyanskiy, Flexible hard Al-Si-N films for high temerature operations, Surface and Coatings Technology 307, Part B, 1112-1118 (2016).
  • [8] M. Jacobs, G. Terwagne, P. Roquiny, F. Bodart, Unbalanced magnetron sputtered Si-Al coatings: plasma conditions and film properties versus sample bias voltage, Surface and Coatings Technology 116-119, 735-741 (1999).
  • [9] L. Rebouta, A. Sousa, M. Andritschky, F. Cerqueira, C. J. Tavares, P. Santilli, K. Pischow, Solar selective absorbing coatings based on AlSiN/AlSiON/AlSiOy layers, Applied Surface Science 356, 30, 203-212 (2015).
  • [10] G. Terwagne, F. Bodart, Alumnium and silicon determination on Two Si-Al. Sputter targets used for magnetron sputtering, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 158, 1-4, 683-688 (1999)
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-393faf02-6fd2-4878-90bc-fd446ebf234a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.