PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of chemical reaction and radiation on double diffusive flow of a viscous, dissipative fluid through porous medium in a rectangular cavity with heat sources

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an attempt is made to discuss the combined influence of radiation and dissipation on the convective heat and mass transfer flow of a viscous fluid through a porous medium in a rectangular cavity using the Darcy model. Making use of the incompressibility, the governing non-linear coupled equations for the momentum, energy and diffusion are derived in terms of the non-dimensional stream function, temperature and concentration. The Galerkin finite element analysis with linear triangular elements is used to obtain the global stiffness matrices for the values of stream function, temperature and concentration. These coupled matrices are solved using an iterative procedure and expressions for the stream function, temperature and concentration are obtained as linear combinations of the shape functions. The behavior of temperature, concentration, the Nusselt number and Sherwood number is discussed computationally for different values of the governing parameters, such as the Rayleigh Number (Ra), heat source parameter (α), Eckert number (Ec), Schmidt Number (Sc), Soret parameter (S0), buoyancy ratio (N).
Rocznik
Strony
1115--1150
Opis fizyczny
Bibliogr. 46 poz., tab., wykr.
Twórcy
autor
  • Dept. of Engineering Mathematics A.U. College of Engineering (A), Andhra University Visakhapatnam-530 003, A.P., INDIA
  • Dept. of Engineering Mathematics A.U. College of Engineering (A), Andhra University Visakhapatnam-530 003, A.P., INDIA
Bibliografia
  • Badruddin I.A., Zainal Z.A., Aswatha N. and Seetharamu K.N. (2006): Heat transfer in porous cavity under the influence of radiation and viscous dissipation. - Int. Comm. in Heat and Mass Transfer, vol.33, pp.491-499.
  • Bankvall C.G. (1972): Natural convective heat transfer in an insulated structure. - Lundinst. Tech. Report, vol.38, pp.1-149.
  • Bankvall C.G. (1973): Heat transfer in fibrous material. - J. Test. E; vol.3, pp.235-243.
  • Bankvall C.G. (1974): Natural convective in vertical permeable space. - Warme-and Staffubertragung, vol.7, pp.22-30.
  • Beckermann C., Ramadhyani S. and Viskanta R. (1987): Natural convection flow and heat transfer between fluid layer and a porous layer inside a rectangular enclosure. - Journal of Heat Transfer, vol.109, p.363.
  • Bejan A. (1979): On the boundary layer region in a vertical enclosure filled with a porous medium. - Letters Heat and Mass Transfer. - vol.6, pp.93-102.
  • Burns P.J., Chow L.C. and Chen S. (1926): Int. J. Heat and Mass Transfer, vol.20, pp.919-926.
  • Chen B.K.C., Ivey U.M. and Barry J.M. (1970): Natural convection in enclosed porous medium with rectangular boundaries. - ASME Journal of Heat Transfer, vol.92, pp.21-27.
  • Cheng K.S. and Hi J.R. (1987): Steady, two-dimensional, natural convection in rectangular enclosures with differently heated walls. - Transaction of the ASME, vol.109, p.400-406.
  • Chittibabu D., Prasada Rao D.R.V. and Krishna D.V. (2006): Convection flow through a porous medium in ducts. - Act Science Indica, vol.30 2M, pp.635-642.
  • Han-Chien C., Jer-Huan J. and Wei M. (2007): Mixed convection heat transfer in horizontal rectangular ducts with radiation effects. -Int. Journal of Heat Mass Transfer, vol.50, pp.2874-2882.
  • Hickox C.E. and Gartling D.K. (1981): A numerical study of natural convection in a horizontal porous layer subjected to an end-to-end temperature difference. - ASME. J. Heat Transfer, vol.103, pp.797-802.
  • Hiroxhi I., Kazuyoshi N. and Kenjiro S. (2000): Flow and heat transfer characteristics of backward-facing step laminar flow in a rectangular duct. - Int. J. Heat and Mass Transfer, vol.43, pp.457-471.
  • Holst P.H. (1972): Transient three dimensional natural convection in confined porous media. - Int. J. Heat Mass Transfer, vol.15, pp.72-89.
  • Hyun J.M. and Lee J.W. (1990): Double-diffusive convection in a rectangle with cooperating horizontal gradients of temperature and concentration gradients. - Int. J. Heat Mass Transfer, vol.33.pp.1605-1617.
  • Joseph J., Siegel S. and Siegel R. (1964): Laminar forced convection in rectangular channels with unequal heat addition on adjacent sides. - Int. J. Heat Mass Transfer, vol.71, pp.733-741.
  • Kakutani J. (1958): Effect of transverse magnetic field on the flow due to an oscillatinf flat plate. - J. Phys. Soc., Japan, vol.13, p.1504-1509.
  • Kamotani, Wang L.W., Ostrach S. and Jiang H.D. (1985): Experimental study of natural convection in shallow enclosures with horizontal temperature and concentration gradients. - Int. J. Heat Mass Transfer, vol.28, pp.165-173.
  • Kermant B.C.C: Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. - Heat Transfer Laboratory, Purdue, University, Indiana.
  • Lauriant F. (1984): Natural convection and radiation on enclosure partially, filled with a porous insulation. - ASME, pp.84-107.
  • Lee L., Hyun M.T. and Kim K.W. (1985): Natural convection in confined fluids with combined horizontal temperature and concentration gradients. - Int. J. Heat Mass Transfer, vol.31, pp.1969-1977.
  • Lee L.W. and Hyun J.M. (1990): Double-diffusive convection in a rectangle with opposing horizontal and concentration 8 gradients. - Int. J. Heat and Mass Transfer, vol.33, pp.1619-1632.
  • Morrison F.A. (1973): Transient multiphase multi component flow in porous media. - Int. J. Heat Mass Transfer, vol.16, pp.2331-2341.
  • Ostrach S., Jiang H.D. and Kamotani Y. (1987): Thermo solutal convection in shallow enclosures. - ASME - JSME Thermal Engineering Joint Conference, Hawali.
  • Padmalatha K. (1997): Ph.D. Thesis on “Finite element analysis of laminar convection flow through a porous medium in ducts,” S.K. University, Anantapur, (A. P) India.
  • Padmavathi A. (2009): Finite element analysis of the convective heat transfer flow of a viscous in compressible fluid in a rectangular duct with radiation, viscous dissipation with constant heat source. - Jour. Phys. and Appl. Phys., vol.2.
  • Poulikakos D. and Bejan A. (1983): Natural convection in vertically and horizontally layered porous media heated from side. - Int. J. Heat and Mass Transfer, vol.26, pp.1805-1813.
  • Prasad V. and Kulacki F.A. (1984): Convective heat transfer in a rectangular porous cavity effect of aspect ratio flow structure and heat transfer. - ASME Journal of Heat Transfer, vol.106, pp.158-165.
  • Prasad V. and Kulacki F.A. (1984): Natural convection in a vertical porous annulus. - Int. J. Heat Mass Transfer, vol.27, pp.207-219.
  • Ranga Reddy M. (1997): Heat and mass transfer by natural convection through a porous medium in ducts. - Ph. D thesis, S.K. University, Anantapur.
  • Reddaiah P. (2010): Heat and mass transfer flow of a viscous fluid in a duct of rectangular cross section by using finite element analysis. - European J. of Prime and Applied Mathematics (Accepted).
  • Revnic C., Grosan J., Pop T. and Ingham D.B. (2011): Magnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generation. - Int. J. Heat and Mass Transfer, vol.54, pp.1734-1742.
  • Ribando R.J. and Torrance K.E. (1976): Natural convection in a porous medium effects of confinement, variable permeability and thermal boundary conditions, trans. - Am. Soc. Mech. Engrs. Series. C.J. Heat Transfer, vol.98, pp.42-48.
  • Rubin A. and Schweitzer S. (1972): Heat transfer in porous media with phase change. - Int. J. Heat Mass Transfer, vol.15, pp.43-59.
  • Saffman P.G. (1969): Studies in Applied Mathematics, vol.50, p.537.
  • San J. (1984): Natural convection in a rectangular porous cavity with constant heat flux as vertical wall. - Trans. of ASME, vol.106, p.252.
  • Seki N., Fukusako S. and Inaba H. (1981): Heat transfer in a confined rectangular cavity packed with porous media. - Int. J. of Heat and Mass Transfer, vol.21, pp.985-989.
  • Sivaiah S. (2004): Thermo-diffusion effects on convective heat and mass transfer through a porous medium in ducts. - Ph. D Thesis, S.K. University, Anantapur, India.
  • Tamony B., Krishna P.P.V., Roy S. and Pop I. (2011): Finite element based heat line approach to study mixed convection in a porous square cavity with various wall thermal boundary conditions. - Int. J. Heat and Mass Transfer, vol.54, pp.1706-1727.
  • Teoman A., Hayati O. and Betel A. (1998): Heat transfer and flow structure in a rectangular channel with wing -1.Type vortex Generator. - Tr. J. of Engineering and Environmental Science, vol.22, pp.185-195.
  • Tien C.L. and Hong J.T. (1985): Natural convection in porous media under non-darcian and non-uniform permeability convections. - In: Natural convection (S. Kakac, et. al. Eds.), Washington, D.C, Hemisphere.
  • Trevisan O.V. and Bejan A. (1986): Mass and heat transfer by natural convection in a vertical slot filled with porous medium. - Int. J. Heat Mass Transfer, vol.29, pp.403-415.
  • Trevisan O.V. and Bejan A. (1987): Combined heat and mass transfer by natural convection in a vertical enclosure. - ASME, J. Heat Transfer, vol.109, pp.104-112.
  • Turner B.C. and Flack R.D. (1980): The experimental measurement of natural convective heat transfer in rectangular enclosures with concentrated energy source. - Trans. of ASME, vol.102, pp, 236-242.
  • Verschoor J.D. and Greebler P. (1952): Heat transfer by gas conduction and radiation in fibrous insulation. - Trans.Am. Soc. Mech. Engrs, pp.961-968.
  • Viskanta R., Bergman T.L. and Incropera F.P. (1985): Double differential natural convection. - In: Natural convection fundamentals and applications (S. Kakac, W. Aung and R. Viskanta, Eds.). - Washington, D.C., Hemisphere, pp.1075-1099.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-393f21af-af81-4ce2-afec-d4af2b604669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.