PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A logistic optimization for the vehicle routing problem through a case study in the food industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: In this study, the food delivery problem faced by a food company is discussed. There are seven different regions where the company serves food and a certain number of customers in each region. The time of requesting food for each customer varies according to the shift situation. This type of problem is referred to as a vehicle routing problem with time windows in the literature and the main aim of the study is to minimize the total travel distance of the vehicles. The second aim is to determine which vehicle will follow which route in the region by using the least amount of vehicle according to the desired mealtime. Methods: In this study, genetic algorithm methodology is used for the solution of the problem. Metaheuristic algorithms are used for problems that contain multiple combinations and cannot be solved in a reasonable time. Thus in this study, a solution to this problem in a reasonable time is obtained by using the genetic algorithm method. The advantage of this method is to find the most appropriate solution by trying possible solutions with a certain number of populations. Results: Different population sizes are considered in the study. 1000 iterations are made for each population. According to the genetic algorithm results, the best result is obtained in the lowest population size. The total distance has been shortened by about 14% with this method. Besides, the number of vehicles in each region and which vehicle will serve to whom has also been determined. This study, which is a real-life application, has provided serious profitability to the food company even from this region alone. Besides, there have been improvements at different rates in each of the seven regions. Customers' ability to receive service at any time has maximized customer satisfaction and increased the ability to work in the long term. Conclusions: The method and results used in the study were positive for the food company. However, the metaheuristic algorithm used in this study does not guarantee an optimal result. Therefore, mathematical models or simulation models can be considered in terms of future studies. Besides, in addition to the time windows problem, the pickup problem can also be taken into account and different solution proposals can be developed.
Czasopismo
Rocznik
Strony
387--397
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Manisa Celal Bayar University, Engineering Faculty, Department of Industrial Engineering, Manisa, Turkey
Bibliografia
  • 1. Adamski A., 2015. Routing problems based on HILS system platform, LogForum, 11(1). http://doi.org/10.17270/J.LOG.2015.1.8
  • 2. Campbell A.M., Savelsbergh M., 2005. Decision support for consumer direct grocery initiatives, Transportation Sciences, 39 (3), 313-327. http://doi.org/10.1287/trsc.1040.0105
  • 3. Dantzig G.B., Ramser J.H., 1959. The truck dispatching problem. Management Science, 6(1), 80-91, http://doi.org/10.1287/mnsc.6.1.80.
  • 4. Du J., Li X., Yu L., Dan R., Zhou J., 2017. Multi-depot vehicle routing problem for hazardous materials transportation: A fuzzy bilevel programming. Information Sciences, 399, 201–218, http://doi.org/10.1016/j.ins.2017.02.011.
  • 5. Erdoğan S., Miller-Hooks E., 2012. A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100-114. http://doi.org/10.1016/j.tre.2011.08.001
  • 6. Felipe Á., Ortuño M.T., Righini G., Tirado G., 2014. A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges, Transportation Research Part E: Logistics and Transportation Review, 71, 111-128. http://doi.org/10.1016/j.tre.2014.09.003
  • 7. Figliozzi M., 2010. Vehicle routing problem for emissions minimization. Transportation Research Record: Journal of the Transportation Research Board, (2197), 1-7. http://doi.org/10.3141/2197-01
  • 8. Franceschetti A., Honhon D., Van Woensel T., Bektaş T., Laporte G., 2013. The timedependent pollution-routing problem. Transportation Research Part B: Methodological, 56, 265-293.
  • 9. Gendreau M., Iori M., Laporte G., Martello S., 2008. A Tabu search heuristic for the vehicle routing problem with two‐ dimensional loading constraints, Networks: An International Journal, 51(1), 4-18. http://doi.org/10.1002/net.20192
  • 10. Gajanand M.S., Narendran T.T., 2013. Green route planning to reduce the environmental impact of distribution, International Journal of Logistics Research and Applications, 16(5), 410-432. http://doi.org/10.1080/13675567.2013.831400
  • 11. Glock C.H., Kim T., 2015. Coordinating a supply chain with a heterogeneous vehicle fleet under greenhouse gas emissions, The International Journal of Logistics Management, 26(3), 494-516. http://doi.org/10.1108/IJLM-09-2013-0107
  • 12. Govindan K., Jafarian A., Khodaverdi R., Devika K., 2014. Two-echelon multiple vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food, International journal of production economics, 152, 9-28. http://doi.org/10.1016/j.ijpe.2013.12.028
  • 13. Hasani A., Zegordi S.H., Nikbakhsh E., 2012. Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty, International journal of production research, 50 (16), 4649-4669. http://doi.org/10.1080/00207543.2011.625051
  • 14. Hassanzadeh A., Rasti-Barzoki M. 2017. Minimizing total resource consumption and total tardiness penalty in a resource allocation supply chain scheduling and vehicle routing problem. Applied Soft Computing Journal, 58, 307-323, https://doi.org/10.1016/j.asoc.2017.05.010.
  • 15. Hsu C.I., Hung S.F., Li H.C., 2007. Vehicle routing problem with time-windows for perishable food delivery, Journal of Food Engineering, 80(2), 465-475. http://doi.org/10.1016/j.jfoodeng.2006.05.029
  • 16. Jovanović A.D., Pamučar, D.S., Pejčić-Tarle S., 2014. Green vehicle routing in urban zones – A neuro-fuzzy approach, Expert Systems with Applications, 41(7), 3189-3203. http://doi.org/10.1016/j.eswa.2013.11.015
  • 17. Khouadjia M.R., Sarasola B., Alba E., Jourdan L., Talbi E.G. 2012. A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests, Applied Soft Computing Journal, 12(4), 1426-1439. http://doi.org/10.1016/j.asoc.2011.10.023
  • 18. Koç Ç., Bektaş T., Jabali O., Laporte G. 2014. The fleet size and mix pollution-routing problem, Transportation Research Part B: Methodological, 70, 239-254.
  • 19. Laporte G., 2009, Fifty years of vehicle routing, Transportation science, 43(4), 408-416. http://doi.org/10.1287/trsc.1090.0301
  • 20. Osvald A., Stirn L.Z., 2008. A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food, Journal of Food Engineering, 85 (2), 285-295. http://doi.org/10.1016/j.jfoodeng.2007.07.008
  • 21. Prindezis N., Kiranoudis C.T., Marinos-Kouris D., 2003. A business-to-business fleet management service provider for central food market enterprises, Journal of Food Engineering, 60 (2), 203-210. http://doi.org/10.1016/S0260-8774(03)00041-4
  • 22. Qi Y., Hou Z., Li H., Huang J., Li X., 2015. A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows, Computers & Operations Research, 62(3), 61–77, http://doi.org/10.1016/j.cor.2015.04.009.
  • 23. Saberi M., Verbas İ.Ö., 2012. Continuous approximation model for the vehicle routing problem for emissions minimization at the strategic level, Journal of Transportation Engineering, 138(11), 1368-1376.
  • 24. Schmid V., Doerner K.F., Hartl R.F., Savelsbergh M.W.P., Stoecher W., 2009. A hybrid solution approach for ready-mixed concrete delivery, Transportation Sciences, 43 (1), 70-85. http://doi.org/10.1287/trsc.1080.0249
  • 25. Sorensen K., Schittekat P., 2013. Statistical analysis of distance-based path relinking for the capacitated vehicle routing problem, Computers and Operations Research, 40(12), 3197–3205, https://doi.org/10.1016/j.cor.2013.02.005.
  • 26. Subramanian A., Uchoa E., Ochi L.S., 2013. A hybrid algorithm for a class of vehicle routing problems, Computers & Operations Research, 40(10), 2519-2531. http://doi.org/10.1016/j.cor.2013.01.013
  • 27. Suzuki Y., Kabir, Q.S., 2015. Green Vehicle Routing for Small Motor Carriers, Transportation Journal, 54(2), 186-212. http://doi.org/10.5325/transportationj.54.2.0186
  • 28. Ting C.K., Liao X.L., Huang Y.H., Liaw R.T. 2017. Multi-vehicle selective pickup and delivery using metaheuristic algorithms. Information Sciences, 406-407, 146-169, http://doi.org/10.1016/j.ins.2017.04.001.
  • 29. Todosijević R., Hanafi S., Urošević D., Jarboui B., Gendron B., 2017. A general variable neighborhood search for the swap-body vehicle routing problem. Computers & Operations Research, 78, 468-479, http://doi.org/10.1016/j.cor.2016.01.016.
  • 30. Tarantilis C.D., Kiranoudis C.T., 2001. A meta-heuristic algorithm for the Efficient distribution of perishable foods, Journal of Food Engineering, 50 (1), 1-9. http://doi.org/10.1016/S0260-8774(00)00187-4
  • 31. Tarantilis C.D., Kiranoudis C.T., 2002. Distribution of fresh meat, Journal of Food Engineering, 51 (1), 85-91. http://doi.org/10.1016/S0260-8774(01)00040-1
  • 32. Uchoa E., Pecin D., Pessoa A., Poggi M., Vidal T., Subramanian A. 2017. New benchmark instances for the Capacitated Vehicle Routing Problem, European Journal of Operational Research, 257(3), 845–858, http://doi.org/10.1016/j.ejor.2016.08.012.
  • 33. Velázquez-Martínez J.C., Fransoo J.C., Blanco E.E., Valenzuela-Ocaña K.B., 2016, A new statistical method of assigning vehicles to delivery areas for CO2 emissions reduction. Transportation Research Part D: Transport and Environment, 43, 133-144. http://doi.org/10.1016/j.trd.2015.12.009
  • 34. Ying W., Ying Y.L., 2012. Optimization model of refrigerated food transportation. In: Proceedings of International Conference of Service Systems and Service Management, Beijing, 220-224. http://doi.org/10.1109/ICSSSM.2012.6252224.
  • 35. Wen L., Eglese R. 2015. Minimum cost VRP with time-dependent speed data and congestion charge. Computers & Operations Research, 56, 41-50. http://doi.org/10.1016/j.cor.2014.10.007
  • 36. Zhang Z., Wei L., Lim A. 2015. An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints, Transportation Research Part B: Methodological, 82, 20-35. http://doi.org/10.1016/j.trb.2015.10.001
  • 37. Zames G., Ajlouni N.M., Ajlouni N.M., Ajlouni N.M., Holland J. H., Hills W.D., Goldberg D.E., 1981. Genetic algorithms in search, optimization and machine learning. Information Technology Journal, 3(1), 301- 302.
  • 38. Zhu X., Garcia-Diaz A., Jin M., Zhang Y., 2014. Vehicle fuel consumption minimization in routing over-dimensioned and overweight trucks in capacitated transportation networks, Journal of Cleaner Production, 85, 331-336. http://doi.org/10.1016/j.jclepro.2013.10.036
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-393ece7d-f6cb-4fbe-82e7-6a400fe5aa54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.