Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The combined systems of integral equations have become of great importance in various fields of sciences such as electromagnetic and nuclear physics. New classes of the merged type of Urysohn Volterra-Chandrasekhar quadratic integral equations are proposed in this paper. This proposed system involves fractional Urysohn Volterra kernels and also Chandrasekhar kernels. The solvability of a coupled system of integral equations of Urysohn Volterra-Chandrasekhar mixed type is studied. To realize the existence of a solution of those mixed systems, we use the Perov’s fixed point combined with the Leray-Schauder fixed point approach in generalized Banach algebra spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
236--248
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Suez Canal University, Faculty of Computers and Informatics, Department of Basic Science, Ismailia, Egypt
Bibliografia
- [1] J. Banas, M. Jleli, M. Mursaleen, B. Samet, and C. Vetro, Advances in Nonlinear Analysis via the Concept of Measures of Noncompactnes, Springer, Singapore, 2017.
- [2] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
- [3] P. P. Zabrejko, A. I. Koshelev, M. A. Krasnosel’skii, S. G. Mikhlin, L. S. Rakovschik, and V. J. Stetsenko, Integral Equations, Nordhoff, Leyden, MA, USA, 1975.
- [4] M. A. Polo-Labarrios, S. Q. Garcia, G. E. Paredes, L. F. Perez, and J. O. Villafuerta, Novel numerical solution to the fractional neutron point kinetic equation in nuclear reactor dynamics, Ann. Nucl. Energy 137(2020), 10717, DOI: 10.1016/j.anucene.2019.107173.
- [5] H. Chen, J. I. Frankel, and M. Keyhani, Two-probe calibration integral equation method for nonlinear inverse heat conduction problem of surface heat fluxestimation, Int. J. Heat Mass Transf. 121(2018), 246-264, DOI: 10.1016/j.ijheatmasstransfer.2017.12.072.
- [6] T. E. Roth and W. C. Chew, Stability analysis and discretization of A–Φ time domain integral equations for multiscale electromagnetic, J. Comput. Phys. (2019), 109102, DOI: 10.1016/j.jcp.2019.109102.
- [7] E. Cuesta, M. Kirance, and S. A. Malik, Image structure preseving denoising generalized fractional time integrals, Signal Process. 92(2012), 553-563.
- [8] J. Banas and A. Chlebowicz, On a quadratic integral equation of Erdelyi-Kiber type in the class of subpower functions, J. Nonlinear Convex Anal. 19(2018), 823-840.
- [9] J. Banas and A. Dubiel, Solvability of a Volterra-Stieltjes integral equations in the class of functions having limits at infinity, Electr. J. Qualit. Th. Diff. Equations 53(2017), 1-17, DOI: 10.14232/ejqtde.2017.1.53.
- [10] J. R. Wang, C. Zhu, and M. Feckar, Solvability of fully nonlinear functional equations involving Erdelyi-Kober fractional integrals on the unbounded interval, Optimization 63(2014), no. 8, 1235-1248, DOI: 10.1080/02331934.2014.883513.
- [11] R. Hilfer, Applications of Fractional Calculs in Phyiscs, World Scientific, New York, 2000.
- [12] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44(2017), 460-481, DOI: 10.1016/j.cnsns.2016.09.006.
- [13] M. A. Darwish, J. R. Graef, and K. Sadarangan, On Urysohn-Volterra fractional quadratic integral equations, J. Appl. Anal. Comput. 8(2018), no. 1, 331-343, DOI: 10.11948/2018.331.
- [14] J. J. Nieto, A. Ouahab, and R. Rodriguez-Lopez, Fixed point theorems in generalized Banach Algebras and applications, Fixed Point Theory 19(2018), no. 2, 707-732, DOI: 10.24193/fpt-ro.2018.2.54.
- [15] H. Hashem, A. El-Sayed, and D. Baleanu, Existence results for block matrix operator of fractional orders in Banach algebras, Mathematics 7(2019), 856, DOI: 10.3390/math7090856.
- [16] A. B. Amar, A. Jeribi, and B. Krichen, Fixed point theorems for block matrix and an applications to a structured problem under boundary conditions of Rotenberg’s model type, Math. Slovaca 64(2014), 155-174, DOI: 10.2478/s12175-013-0193-3.
- [17] S. Chandrasekhar, Radiative Transfer, Oxford University Press, London, 1950 and Dover Publication, New York, 1960.
- [18] J. Banas, M. Lecko, and W. G. El-Sayed, Existence theorem for some quadratic integral equations, J. Math. Anal. Appl. 222(1998), 276-286.
- [19] H. H. Hashem and A. M. A. El-Sayed, Stabilization of coupled systems of quadratic integral equations of Chandrasekhar type, Math. Nachr. 290(2017), no. 2-3, 341-348, DOI: 10.1002/mana.201400348.
- [20] D.-Chen Chang and S.-Ya Feng, On integral equations of Chandrasekhar type, J. Nonlinear Convex Anal. 19(2018), no. 3, 525-541.
- [21] A. Jeribi, N. Naddachi, and B. Krichen, Fixed-point theorems for multivalued operator matrix under weak topology with an applications, Bull. Malays. Math. Sci. Soc. 43(2020), 1047-1067, DOI: 10.1007/s40840-019-00724-w.
- [22] H. H. G. Hashem, Solvability of a 2×2 block operator matrix of Chandrasekhar type on a Banach algebra, Filomat 31(2017), no. 16, 5169-5175, DOI: 10.2298/FIL1716169H.
- [23] A. Jeribi, N. Kaddachi, and B. Krichen, Fixed point theorem of block operator matrices on Banach algebra and an application to functional integral equations, Math. Methods Appl. Sci. 36(2013), no. 6, 659-673, DOI: 10.1002/mma.2615.
- [24] R. Arab and M. Mursaleen, On existence of solution of a class of quadratic-integral equations using contraction defined by simulation functions and measure of noncompactness, Carpathian J. Math. 34(2018), no. 3, 371-378.
- [25] R. Arab, M. Mursaleen, and S. M. H. Rizvi, Positive solution of a quadratic integral equation using generalization of Darbo’s fixed point theorem, Numer. Funct. Anal. Optim. 40(2019), no. 10, 1150-1168, DOI: 10.1080/01630563.2019.1589496.
- [26] A. Jeribi, B. Krichen, and B. Mefteh, Existence of solutions for an infinite system of qadratic integral equations in the Banach algebra C(I,c0), Mediterr. J. Math. 17(2020), 10, DOI: 10.1007/s00009-019-1460-5.
- [27] G. Darbo, Punti uniti in transformazioni a condominio non compalto, Rend. Sem. Math. Univ. Padova 24(1955), 84-92.
- [28] M. Cvetkovic and V. Rakocevic, Extensions of Perov theorem, Carpathian J. Math. 31(2015), no. 2, 181-188.
- [29] M. Cvetkovic, On the eqivalence between Perov fixed point theorem and Banach contraction principle, Filomat 31(2017), no. 11, 3137-3146, DOI: 10.2307/26195042.
- [30] A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Unavn. 2(1964), 115-134.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-393d8b90-9316-4218-9fe6-2bb88c77fc5d