PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of TBM disc cutter cutting on microwave‑treated basalt with an unrelieved model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cutter wear or damage is a significant issue during tunnel boring machine (TBM) tunneling in hard rock. Microwave preconditioning has been verified as a promising approach to reduce cutter wear and enhance the TBM excavation efficiency. Thus, understanding the TBM cutting performance for microwave-treated hard rock is necessary. First, numerical verification of a cutting model was performed to examine the universality and reliability of the model. Then, the rock mechanical parameters of microwave-treated basalt were calibrated using linear Mohr-Coulomb theory. Finally, linear cutting simulations were conducted with an unrelieved rock model by considering the variables of the disc cutter penetration depth and microwave irradiation conditions. The numerical results indicated that the maximum reduction in the rolling and normal forces reached 38.38% and 44.95% (under a 5-kW microwave power and 3-mm penetration depth), respectively. A novel indicator of the linear friction energy was proposed to assess disc cutter wear, and the maximum reduction reached 36.81% under a microwave power of 5 kW and penetration depth of 4 mm. Considering the microwave weakening efficiency, TBM tunneling efficiency and cutter wear, microwave parameters including a high microwave power and short irradiation time were suggested for future practice.
Rocznik
Strony
art. no. e147
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
  • Department of Mining and Materials Engineering, McGill University, Montreal H3A2A7, Canada
  • Research Center for Mining Engineering and Technology in Cold Regions, Central South University, Changsha 410083, Hunan, China
  • Department of Mining and Materials Engineering, McGill University, Montreal H3A2A7, Canada
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
  • Research Center for Mining Engineering and Technology in Cold Regions, Central South University, Changsha 410083, Hunan, China
autor
  • School of Mines, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
autor
  • State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, Henan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
  • Research Center for Mining Engineering and Technology in Cold Regions, Central South University, Changsha 410083, Hunan, China
autor
  • Institute of Transportation Infrastructure, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Perak, Malaysia
  • Department of Maritime Technology, University Malaysia Terengganu, 21300 Kuala Terengganu, Malaysia
Bibliografia
  • 1. Zhang ZQ, Li YL, Wang S, Zhang H, Qian Y. Assessing and controlling of boulder deep-hole blasting-induced vibrations to minimize impacts to a neighboring metro shaft. Arch Civ Mech Eng. 2021;21:66. https://doi.org/10.1007/s43452-021-00220-8.
  • 2. Cheng JL, Wang YX, Wang LG, Li YH, Hu B, Jiang ZH. Penetration behaviour of TBM disc cutter assisted by vertical precutting free surfaces at various depths and confining pressures. Arch Civ Mech Eng. 2021;21:22. https://doi.org/10.1007/s43452-020-00172-5.
  • 3. Gong QM, Yin LJ, Ma HS, Zhao J. TBM tunnelling under adverse geological conditions: an overview. Tunn Undergr Space Technol. 2016;57:4-17. https://doi.org/10.1016/j.tust.2016.04.002.
  • 4. Hassanpour J, Rostami J, Tarigh Azali S, Zhao J. Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case history of Karaj water conveyance tunnel. Iran Tunn Undergr Space Technol. 2014;43:222-31. https://doi.org/10.1016/j.tust.2014.05.007.
  • 5. Hassani F, Nekoovaght P. The development of microwave assisted machineries to break hard rocks. In: Proceedings of the 28th international symposium on automation and robotics in construction, Seoul, South Korea. 2011. 2011. pp. 678-84.
  • 6. Shankar VK, Kunar BM, Murthy CS, Ramesh MR. Measurement of bit-rock interface temperature and wear rate of the tungsten carbide drill bit during rotary drilling. Friction. 2020;8:1073-82. https://doi.org/10.1007/s40544-019-0330-2.
  • 7. Lauriello PJ, Fritsch CA. Design and economic constraints of thermal rock weakening techniques. Int J Rock Mech Min Sci. 1974;11:31-9. https://doi.org/10.1016/0148-9062(74)92203-7.
  • 8. Maurer WC. Advanced drilling techniques. Tulsa: Penn Well Books; 1980.
  • 9. Nekoovaght P, Gharib N, Hassani F. Microwave assisted rock breakage for space mining. Earth Space. 2014;2014:414-23.
  • 10. Jones DA, Kingman SW, Whittles DN, Lowndes IS. Understanding microwave assisted breakage. Miner Eng. 2005;18:659-69. https://doi.org/10.1016/j.mineng.2004.10.011.
  • 11. Li X, Wang S, Xu Y, Yao W, Xia KW, Lu GM. Effect of microwave irradiation on dynamic mode-Ι fracture parameters of Barre granite. Eng Fract Mech. 2020;224: 106748. https://doi.org/10.1016/j.engfracmech.2019.106748.
  • 12. Wang S, Xu Y, Xia KW, Tong TY. Dynamic fragmentation of microwave irradiated rock. J Rock Mech Geotech Eng. 2020. https://doi.org/10.1016/j.jrmge.2020.09.003.
  • 13. Li X, Wang S, Xia K, Tong T. Dynamic tensile response of a microwave damaged granitic rock. Exp Mech. 2020. https://doi.org/10.1007/s11340-020-00677-3.
  • 14. Hartlieb P, Kuchar F, Moser P, Kargl H, Restner U. Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity. Miner Eng. 2018;118:37-51. https://doi.org/10.1016/j.mineng.2018.01.003.
  • 15. Hassani F, Shadi A, Rafezi H, Sasmito AP, Ghoreishi-Madiseh SA. Energy analysis of the effectiveness of microwave-assisted fragmentation. Miner Eng. 2020;159: 106642. https://doi.org/10.1016/j.mineng.2020.106642.
  • 16. Hassani F, Nekoovaght PM, Gharib N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation. J Rock Mech Geotech Eng. 2016;8:1-15. https://doi.org/10.1016/j.jrmge.2015.10.004.
  • 17. Hartlieb P, Grafe B. Experimental study on microwave assisted hard rock cutting of granite. BHM Berg Huettenmaenn Monatsh. 2017;162:77-81. https://doi.org/10.1007/s00501-016-0569-0.
  • 18. Hartlieb P, Grafe B, Shepel T, Malovyk A, Akbari B. Experimental study on artificially induced crack patterns and their consequences on mechanical excavation processes. Int J Rock Mech Min Sci. 2017;100:160-9. https://doi.org/10.1016/j.ijrmms.2017.10.024.
  • 19. Shepel T, Grafe B, Hartlieb P, Drebenstedt C, Malovyk A. Evaluation of cutting forces in granite treated with microwaves on the basis of multiple linear regression analysis. Int J Rock Mech Min Sci. 2018;107:69-74. https://doi.org/10.1016/j.ijrmms.2018.04.043.
  • 20. Hartlieb P, Rostami J. Pre-conditioning of hard rocks as means of increasing the performance of disc cutters for tunneling and shaft construction. North American Tunneling 2018. Washington, DC, 2018. 2018. pp. 24-7.
  • 21. Arora S, Kaunda R. New excavation technologies for underground construction: linear cutting machine tests on microwave-irradiated granodiorite. UTC-UTI Report 001, University Transportation Center for Underground Transportation Infrastructure. 2019.
  • 22. Xu Y, Yao W, Xia KW. Numerical study on tensile failures of heterogeneous rocks. J Rock Mech Geotech Eng. 2020;12:50-8. https://doi.org/10.1016/j.jrmge.2019.10.002.
  • 23. Huang YH, Yang SQ, Hall MR, Tian WL, Yin PF. Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity. Arch Civ Mech Eng. 2018;18:1359-73. https://doi.org/10.1016/j.acme.2018.04.005.
  • 24. Yang C, Zhou KP, Gao RG, Xiong X. Numerical investigation of the dynamic response of a preconditioned roof in an underground mine: a case study of mining environment regeneration. Soil Dyn Earthq Eng. 2021;140: 106457. https://doi.org/10.1016/j.soildyn.2020.106457.
  • 25. Lucy LB. A numerical approach to the testing of the fission hypothesis. Astron J. 1977;82:1013. https://doi.org/10.1086/112164.
  • 26. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181:375-89. https://doi.org/10.1093/mnras/181.3.375.
  • 27. Koneshwaran S, Thambiratnam DP, Gallage C. Blast response of segmented bored tunnel using coupled SPH-FE method. Structures. 2015;2:58-71. https://doi.org/10.1016/j.istruc.2015.02.001.
  • 28. Pan YC, Liu QS, Peng XX, Liu Q, Liu JP, Huang X, Cui XZ, Cai T. Full-scale linear cutting tests to propose some empirical formulas for TBM disc cutter performance prediction. Rock Mech Rock Eng. 2019;52:4763-83. https://doi.org/10.1007/s00603-019-01865-x.
  • 29. Thyagarajan MV. The comparison of cutting forces on disc cutters in constant vs variable penetration modes. Master dissertation Thesis, Colorado School of Mines. 2018.
  • 30. Xia YM, Guo B, Tan Q, Zhang XH, Lan H, Ji ZY. Comparisons between experimental and semi-theoretical cutting forces of CCS disc cutters. Rock Mech Rock Eng. 2018;51:1583-97. https://doi.org/10.1007/s00603-018-1400-x.
  • 31. Cho J-W, Jeon S, Yu S-H, Chang S-H. Optimum spacing of TBM disc cutters: a numerical simulation using the three-dimensional dynamic fracturing method. Tunn Undergr Space Technol. 2010;25:230-44. https://doi.org/10.1016/j.tust.2009.11.007.
  • 32. Neimitz A, Galkiewicz J, Dzioba I. Calibration of constitutive equations under conditions of large strains and stress triaxiality. Arch Civ Mech Eng. 2018;18:1123-35. https://doi.org/10.1016/j.acme.2018.02.013.
  • 33. Barr AD. Strain-rate effects in quartz sand, University of Sheffield. 2016.
  • 34. Wright A. Tyre/soil interaction modelling within a virtual proving ground environment, Cranfield University. 2012.
  • 35. Perras MA, Diederichs MS. A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng. 2014;32:525-46. https://doi.org/10.1007/s10706-014-9732-0.
  • 36. Giannaros E, Kotzakolios A, Kostopoulos V, Campoli G. Hyper-velocity impact response of CFRP laminates using smoothed particle hydrodynamics method: Implementation and validation. Int J Impact Eng. 2019;123:56-69. https://doi.org/10.1016/j.ijimpeng.2018.09.016.
  • 37. Labra C, Rojek J, Onate E. Discrete/finite element modelling of rock cutting with a TBM disc cutter. Rock Mech Rock Eng. 2017;50:621-38. https://doi.org/10.1007/s00603-016-1133-7.
  • 38. Balci C, Bilgin N. Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines. Int J Rock Mech Min Sci. 2007;44:468-76. https://doi.org/10.1016/j.ijrmms.2006.09.001.
  • 39. Lu GM, Feng XT, Li YH, Hassani F, Zhang XW. Experimental investigation on the effects of microwave treatment on basalt heating, mechanical strength, and fragmentation. Rock Mech Rock Eng. 2019;52:2535-49. https://doi.org/10.1007/s00603-019-1743-y.
  • 40. Lu GM, Feng XT, Li YH, Zhang XW. Influence of microwave treatment on mechanical behaviour of compact basalts under different confining pressures. J Rock Mech Geotech Eng. 2020;12:213-22. https://doi.org/10.1016/j.jrmge.2019.06.009.
  • 41. Yang C, Ferri H, Zhou K, Gao F, Topa A. SPH-FEM simulations of microwave-treated basalt strength. Trans Nonferr MetSoc China. 2022;1-27. http://kns.cnki.net/kcms/detail/43.1239.TG.20211112.1508.010.html.
  • 42. Shang JL. Rupture of veined granite in polyaxial compression: insights from three-dimensional discrete element method modeling. JGR Solid Earth. 2020;125:e2019JB019052. https://doi.org/10.1029/2019jb019052.
  • 43. Rostami J, Ozdemir L. New model for performance production of hard rock TBMs. In: Proceedings of the rapid excavation and tunneling conference. Boston, 1993. pp. 793-809.
  • 44. Gertsch R, Gertsch L, Rostami J. Disc cutting tests in Colorado Red Granite: implications for TBM performance prediction. Int J Rock Mech Min Sci. 2007;44:238-46. https://doi.org/10.1016/j.ijrmms.2006.07.007.
  • 45. Yang HQ, Wang H, Zhou XP. Analysis on the rock-cutter interaction mechanism during the TBM tunneling process. Rock Mech Rock Eng. 2016;49:1073-90. https://doi.org/10.1007/s00603-015-0796-9.
  • 46. Chandrasekaran S, Basak T, Srinivasan R. Microwave heating characteristics of graphite based powder mixtures. Int Commun Heat Mass Transf. 2013;48:22-7. https://doi.org/10.1016/j.icheatmasstransfer.2013.09.008.
  • 47. Bobicki ER, Liu Q, Xu Z. Microwave treatment of ultramafic nickel ores: heating behavior, mineralogy, and comminution effects. Minerals. 2018;8:524. https://doi.org/10.3390/min8110524.
  • 48. Lu GM, Li YH, Hassani F, Zhang XW. The influence of microwave irradiation on thermal properties of main rock-forming minerals. Appl Therm Eng. 2017;112:1523-32. https://doi.org/10.1016/j.applthermaleng.2016.11.015.
  • 49. Ma H, Gong Q, Wang J, Yin L, Zhao X. Study on the influence of confining stress on TBM performance in granite rock by linear cutting test. Tunn Undergr Space Technol. 2016;57:145-50. https://doi.org/10.1016/j.tust.2016.02.020.
  • 50. Wang LH, Kang YL, Zhao XJ, Zhang Q. Disc cutter wear prediction for a hard rock TBM cutterhead based on energy analysis. Tunn Undergr Space Technol. 2015;50:324-33. https://doi.org/10.1016/j.tust.2015.08.003.
  • 51. Moon T, Oh J. A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method. Rock Mech Rock Eng. 2012;45:837-49. https://doi.org/10.1007/s00603-011-0180-3.
  • 52. Pang SS, Goldsmith W. Investigation of crack formation during loading of brittle rock. Rock Mech Rock Eng. 1990;23:53-63. https://doi.org/10.1007/BF010 20422.
  • 53. Nekoovaght P. Physical and mechanical properties of rocks exposed to microwave irradiation: potential application to tunnel boring. Doctoral dissertation Thesis, McGill University, Montreal. 2015.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-393c217b-f223-4289-99c8-fd5796aba497
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.