PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics and applications of iron oxides reduction processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present review handles the main characteristics of iron oxide reduction and its industrial applications. The reduction of iron oxide is the basis of all ironmaking processes, whether in a blast furnace or by direct reduction and/or direct smelting processes. The reduction characteristics of iron ores control the efficiency of any ironmaking process and the quality of the produced iron as well. Many controlling parameters should be considered when discussing the reducibility of iron ores such as equilibrium phase diagrams, reduction temperature, pressure, gas composition, and the nature of both iron ores and reducing agent. The different factors affecting the main routes of ironmaking will be highlighted in the present review to give a clear picture for each technology. Moreover, further innovations regarding the reduction of iron oxides such as reduction by green hydrogen will be discussed.
Rocznik
Strony
39--50
Opis fizyczny
Bibliogr. 93 poz., rys., tab., wz.
Twórcy
  • College of Engineering, University of Ha’il, Hail, Saudi Arabia
  • Central Metallurgical Research and Development Institute, Egypt
  • Central Metallurgical Research and Development Institute, Egypt
autor
  • Central Metallurgical Research and Development Institute, Egypt
  • College of Engineering, University of Ha’il, Hail, Saudi Arabia
  • Central Metallurgical Research and Development Institute, Egypt
autor
  • Department of Physics, College of Science, University of Hail, Hail, Saudi Arabia
  • College of Engineering, University of Ha’il, Hail, Saudi Arabia
Bibliografia
  • 1. Edström, J.O. (1953). The mechanism of reduction of iron oxides. J. Iron Steel Inst. 175, 289–304.
  • 2. Moon, J.T. & Walker, K.D. (1975). Swelling of iron oxide compacts during reduction. Ironmaking & Steelmaking, 1, 30–35.
  • 3. Spreitzer, D. & Schenk, J. (2019). Reduction of Iron Oxides with Hydrogen—A Review. Res. Internat. 20(10), 1900108. DOI: 10.1002/srin.201900108.
  • 4. Srinivisan, N.S. & Lahiri, A.K. (1977). Studies on the reduction of hematite by carbon. Metal. Trans. B. 8, 175. DOI: 10.1007/BF02656367.
  • 5. Bryk, C. & Lv, W.K. (1986). Continuous Reduction of iron ore with coal in an electrically heated furnace. The Canadian J. Mater. Sci. 25(3), 241–246. DOI: 10.1179/cmq.1986.25.3.241.
  • 6. Haque, R., Ray, H.S. & Mukherjee, A. (1993). Reduction of iron ore fines by coal fines in a packed bed and fluidized bed apparatus — A comparative study. Metall. Mater Trans B. 24, 1993, 511–520. DOI: 10.1007/BF02666434.
  • 7. Morrison, A.L., Wright, J.K. & Bouling, K. McG. (1978). Microstructure of metallized iron ore pellets reduced by coal char in a rotary kiln simulator. Ironmaking & Steelmaking, 5(1), 39–44.
  • 8. El-Geassy, A.A. & Nasr, M.I. (1990). Effect of sintering on the structure of hematite and its behaviour during reduction. Canadian Metallurgical Quarterly, 29(3), 185–191. DOI: 10.1179/cmq.1990.29.3.185.
  • 9. Davis, C.G., McFarlin, J.F. & Pratt, H.R. Direct-reduction technology and economics. (1982). Ironmaking & Steelmaking, 9(3), 93–129.
  • 10. Unal, A. & Bradshow, A.V. (1983). Rate processes and structural changes in gaseous reduction of hematite particles to magnetite. Metall. Trans. 14, 743–752.
  • 11. Abdel Halim, K.S.Nasr, M.I. & El-Geassy, A.A. (2011). Developed model for reduction mechanism of iron ore pellets under load. Ironmaking & Steelmaking, 38, 189–196. DOI: 10.1179/030192310X12816231892305.
  • 12. El-Geassy, A.A., Nasr, M.I., El-Raghy, S.M. & Hammam, A.E. (2020). Comparative studies on isothermal and non-isothermal reduction of hematite in carbon monoxide atmosphere. Ironmaking & Steelmaking, 47, 948–957. DOI: 10.1080/03019233.2019.1646564.
  • 13. Bahgat, M., Abdel Halim, K.S., El-Kelesh, H.A. & Nasr, M.I. (2011).Behaviour of wüstite prepared from Baharia iron ore sinter during reduction with CO–CO2–N2 gas mixture. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metal. C). 120(2), 102. DOI: 10.1179/1743285510Y.0000000010.
  • 14. El-Geassy, A.A. & Rajaumar, V. (1985) Influence of particle size on the gaseous reduction of wüstite at 900–1100 oC. Trans. ISIJ, 25, 1022.
  • 15. Shehata, K.A. & Ezz, S.Y. (1973). Study of the last stages or reduction of iron oxides. Trans. IMM, 82 C, 638.
  • 16. El-Geassy, A.A., Nasr, M.I. & Omar, A.A. (1990). The fourteen congress IMM, 2-6 July (pp 29). London, UK.
  • 17. El-Geassy, A.A. (1986). Gaseous reduction of Fe2O3 compacts at 600–1050 oC. J. Mat. Sci. 21, 3889–3900. DOI: 10.1007/BF02431626.
  • 18. Nasr, M.I. (1985). Structural analysis in gas solid reaction. Ph. D. Thesis, Cairo University, Egypt.
  • 19. Hessien, M., Kashiwaya, Y., K. Ishii, K., Nasr, M.I. & El-Geassy, A.A. (2008). Characterization of iron ore sinter and its behaviour during non-isothermal reduction conditions. Ironmaking & Steelmaking, 35(3), 183–190. DOI: 10.1179/174328107X174663.
  • 20. El-Geassy, A.A., Shehata, K.A. & Ezz, S.Y. (1977). Mechanism of iron oxide reduction with hydrogen/carbon monoxide mixtures. J. Iron-Steel Inst. 17(11), 629–635. DOI: 10.2355/isijinternational1966.17.629.
  • 21. Turkdogan, E.T. & Vinters, J.V. (1974). Catalytic effect of iron on decomposition of carbon monoxide: I. carbon deposition in H2-CO Mixtures. Metal Trans B. 5, 11–19. DOI: 10.1007/BF02642919.
  • 22. Okura, A. & Metsuahita, Y. (1965). On the properties of reduced sponge-iron powders. Testu-To-Hagane, 51, 11. DOI: 10.2355/tetsutohagane1955.51.1_11.
  • 23. Towhidi, N. & Szekely, J. (1980). An experimental study of hematite reduction with CO+H2 mixtures over the temperature range 600–1300 o C. J. Metals. 32(12), 420.
  • 24. Wang, H. & Sohn, H.Y. (2012). Effects of Reducing Gas on Swelling and Iron Whisker Formation during the Reduction of Iron Oxide Compact. Steel Res. Int. 83(9999), 1-7. DOI: 10.1002/srin.201200054.
  • 25. P. Cavaliere, P., Perrone, A. & Marsano, D. (2023). Effect of reducing atmosphere on the direct reduction of iron oxides pellets. Powder Technol. 426 (118650). DOI: 10.1016/j. powtec.2023.118650.
  • 26. Mckewan, W.K. (1962). Trans. TMS-AIME. 224, 2, 387–393.
  • 27. Sato, K. Ueda, Y., Nishikawa, Y. & Goto, T. (1986). Effect of Pressure on Reduction Rate of Iron Ore with High Pressure Fluidized Bed. J. Iron-Steel Inst. 26(8), 697. DOI: 10.2355/isijinternational1966.26.697.
  • 28. Turkdogan, E.T. & Vinters, J.V. (1971). Gaseous reduction of iron oxides. 1. Reduction of hematite in hydrogen. Met. Trans. 2(11), 3175–3188.
  • 29. Turkdogan, E.T. & Vinters, J.V. (1972). Gaseous reduction of iron oxides: Part III. Reduction-oxidation of porous and dense iron oxides and iron. Met. Trans. 3, 1561–1574. DOI: 10.1007/BF02643047.
  • 30. El-Geassy, A.A. & Nasr, M.I. (1990). Influence of the original structure on the kinetics and mechanisms of carbon monoxide reduction of hematite compacts. J. Iron-Steel Inst. 30(6), 417–425. DOI: 10.2355/isijinternational.30.417.
  • 31. Abdel Halim, K.S., Bahgat, M., El-Kelesh, H.A. & Nasr, M.I. (2009). Metallic Iron Whisker Formation and Growth during Iron Oxide Reduction: Basicity Effect. Ironmaking & Steelmaking, 36(8), 631. DOI: 10.1179/174328109X463020.
  • 32. Bahgat, M., Abdel Halim, K.S., Nasr, M.I. & El-Geassy, A.A. (2008). Morphological Changes Accompanying the Gaseous Reduction of SiO2- Doped Wüstite Compacts. Ironmaking & Steelmaking, 35(3), 205–212. DOI: 10.1179/174328107X155259.
  • 33. Abdel Halim, K.S. (2007). Isothermal reduction behavior of Fe2O3/MnO composite materials with solid carbon. Mater. Sci. Eng. A, 452–453, 15–22. DOI: 10.1016/j.msea.2006.12.126.
  • 34. Bahgat, M., Abdel Halim, K.S., Nasr M.I. & El-Geassy A.A. (2007). Reduction Behavior of Wüstite Doped with MgO. Steel Res. Int. 78(6), 443–450. DOI: 10.1002/srin.200706228.
  • 35. Bahgat, M., Abdel Halim, K.S., El-Kelesh H.A. & Nasr, M.I. (2011). Behaviour of wustite prepared from Baharia iron ore sinter during reduction with CO–CO2–N2 gas mixture. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metal. C). 120(2), 102. DOI: 10.1179/1743285510Y.0000000010.
  • 36. El-Geassy, A.A. (1996). Gaseous reduction of pure Fe2O3 and MgO-doped Fe2O3 compacts with carbon monoxide at 1173–1473 K. J. Iron-Steel Inst. 36, 1328–1337.
  • 37. El-Geassy, A.A. (1997). Stepwise reduction of CaO and/or MgO doped-Fe2O3 compacts to magnetite then subsequently to iron at 1173–1473K. J. Iron-Steel Inst. 37, 844–853. DOI: 10.2355/isijinternational.37.844.
  • 38. El-Geassy, A.A., Nasr, M.I., Omar, A.A. & Mousa, E.A. (2007). Reduction kinetics and catastrophic swelling of MnO2-doped Fe2O- compacts with CO at 1073–1373K. J. Iron-Steel Inst. 47(3), 377–385. DOI: 10.2355/isijinternational.47.377.
  • 39. El-Geassy, A.A. (1999). Influence of Doping with CaO and/or MgO on Stepwise Reduction of Pure Hematite Compacts. Ironmaking and Steelmaking 26(1), 41–52. DOI: 10.1179/irs.1999.26.1.41.
  • 40. El-Geassy, A.A. (1996). Reduction of CaO and/or MgO-doped Fe2O3 compacts with carbon monoxide at 1173–1473K. J. Iron-Steel Inst. 36(11), 1344–1353. DOI: 10.2355/isijinternational.36.1344.
  • 41. Abdel Halim, K.S., El-Geassy, A.A., Ramadan, M.; Nasr, M.I., Hussein, A., Fathy, N. & Alghamdi, A.S. (2022). Reduction Behavior and Characteristics of Metal Oxides in the Nanoscale. Metals, 12(12), 182. DOI:10.3390/met12122182.
  • 42. Szekely, J., Evans, J. & Sohn, H.Y. (1976). Gas Solid Reactions. Academic Press. New York, USA. Retrieved by AlChE (1977). 23(4). DOI: 10.1002/aic.690230435.
  • 43. Morrison, A.L., Wright, J.K. & Bouling, K.McG. (1978). Direct reduction of iron ore pellets in a rotary kiln simulator. Ironmaking and Steelmaking, 5(1), 32–38.
  • 44. McKewan, W.K. (1965). Steel Making, the Chipman Conference.141. MIT Press, Cambridge. Ed. J.F. Elliott.
  • 45. Lien, H.O, El-Mehairy A.E. & Ross, H.U. (1971). A two-zone theory of iron oxide reduction. J. Iron-Steel Inst. 209, 451–545.
  • 46. Babich, A. & Senk, D. (2015). Recent developments in blast furnace iron-making technology, Elsevier, Mineralogy, Processing and Environmental Sustainability, Pages 505–547, DOI: 10.1016/B978-1-78242-156-6.00017-4.
  • 47. Abdel Halim, K.S. (2013). Theoretical approach to change blast furnace regime with natural gas injection. J. Iron Steel Res. Internat. 20(9), 40–46. DOI: 10.1016/S1006-706X(13)60154-5.
  • 48. Wang, Y., Zuo, H. & Zhao, J. (2019). Recent progress and development of ironmaking in China as of 2019: an overview. Ironmaking & Steelmaking, 2020, 47(5), 1–10. DOI: 10.1080/03019233.2020.1794471.
  • 49. Chen, Y. & Zuo, H. (2021). Review of hydrogen-rich ironmaking technology in blast furnace. Ironmaking & Steelmaking, 48(6), 749–768. DOI: 10.1080/03019233.2021.1909992.
  • 50. Aziz, I.H., Abdullah, M.M., Salleh, M.A., Ming, L.Y. et.al. (2022). Recent developments in steelmaking industry and potential alkali activated based steel waste: A Comprehensive review. Materials, 15, 1948. DOI: 10.3390/ma15051948.
  • 51. Pavalov, M.A. (1949). Metallurgy of Pig Iron, Part II, Metallurgizdate, 628.
  • 52. Abdel Halim, K.S., Andronov, V.N. & Nasr, M.I. (2009). Blast furnace operation with natural gas injection and minimum theoretical flame temperature. Ironmaking and Steelmaking, 36(1), 12–16. DOI: 10.1179/174328107X155240.
  • 53. Abdel Halim, K.S. (2007). Effective utilization of using natural gas injection in the production of pig iron. Materials Letters, 61, 3281–3286. DOI:10.1016/j.matlet.2006.11.053.
  • 54. Andronov, V.N. & Abdel Halim, K.S. (2001). Improvement of technology of blast furnace melting with combined blowing, J. Ferrous Metals (Cherny Metall), 8, 25–30.
  • 55. Kuang, S., Li, Z. & Yu. A. (2018). Review on modeling and simulation of blast furnace. Steel Research International 89 (1). DOI: 10.1002/srin.201700071.
  • 56. Direct from Midrex, Third quarter. (2012).
  • 57. Dutta, S.K. & Sah, R. (2016). Direct Reduced Iron: Production. Encyclopedia of Iron, Steel, and Their Alloys. CRC Press. DOI: 10.1081/E-EISA-120050996.
  • 58. 2020 World direct Reduction Statistics by Midrex. (2021). World Steel Dynamics, WSD. New Jersy, U.S.A.
  • 59. Schenk, J.L. (2006). FINEX®:From fine iron ore to hot metal. Proceedings of the innovations in ironmaking session of 2006. International symposium. Linz, Austria.
  • 60. Sohn, H.Y. & Szekely, J. (1972). A structural model for gas-solid reactions with a moving boundary—III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. J. Chem. Eng. Sci. 27 (4), 763–778.
  • 61. Andronov, V.N. (2001). Modern Blast Furnace. Library of Saint Petersburg State Technical University, Russia.
  • 62. Lu, W.L. (1999). Kinetics and mechanisms of direct reduced iron ore. In J. Feinman, & D. R. Mac Rae (Eds.), Direct reduced iron – Technology and economics of production and use. 43–57. Warrendale: The Iron & Steel Society.
  • 63. Gudenau, H.W., Fang, J., Hirata, T. & Gebel, U. (1989). Steel Res. 60(314), 38.
  • 64. Gransden, I.F. & Sheasby, J.S. (1974). The sticking of iron ore during reduction by hydrogen in a fluidized bed. Canadian Metallurgical Quarterly. 13(4), 649–657.
  • 65. Schmole, P. & Lungen, H.B. (2012). From Ore to Steel-Ironmaking processes. Stahl und Eisen. 132(6), 29–38.
  • 66. Lungen, H.B., Mulheims, K. & Steffen, R. (2001). State of the art of direct reduction and smelting reduction of iron ores. STAHL EISEN. 121(5), 35–47.
  • 67. Kepplinger, W.L. (2009). Actual state of smelting-reduction processes in ironmaking. Stahl und Eisen.7, 43–45.
  • 68. Bohm, C., Heckmann, H. & Grill, W. (2011). SVAI Smelting/Direct Reduction Technology, Proc. Metec In Steel Conf. Dusseldorf, 27 june-1 July 2011. Dusseldorf, Germany.
  • 69. Schenk, J.L., Wallner, F., Kepplinger, W.L., Shin, M.K., Cho, M. & Lee, I.O. (2000). Technology for an increased portion of fine ore in the COREX process. Scandin. J. Metal. 29(2), 81–91.
  • 70. Anameric, B. & Kawatra, S.K. (2009). Direct iron smelting reduction processes.Mineral Processing & Extractive Metall. Rev. 30, 1–51. DOI: 10.1080/08827500802043490.
  • 71. Boom, R. &Steffen, R. (2001). Recycling of scrap for high quality steel products. STEEL RES, 72(3), 91–96.
  • 72. Fruehan, R.J., Astier, J.E. & Steffen, R. (2000). Status of direct reduction and smelting in the year of 2000. Proc. 4th European Coke and Ironmaking Congr. (ECIC 2000). 19–22 June, Paris, France.
  • 73. Shim, Y. & Jung, S. (2018). Conditions for Minimizing Direct Reduction in Smelting Reduction Iron Making. ISIJ. 58(2). 274–281.
  • 74. Chatterjee, A. (2005). A critical appraisal of the present status of smelting reduction-Part I From blast furnace to Corex. Steel Times International, 29(4), 23.
  • 75. Burke, P.D. & Gul, S. (2002). December). HIsmelt—the alternative ironmaking technology. In Proceedings of International Conference on Smelting Reduction for Ironmaking, Jouhari, AK, Galgali, RK, Misra, VN, Eds (pp. 61–71).
  • 76. Bhaskar, A., Assadi, M. & Nikpey Somehsaraei, H. (2020). Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen. Energies. 13, 758. DOI: 10.3390/en13030758.
  • 77. Ostadi, M., Paso, K.G., Rodriguez-Fabia, S., Qi, L.E., Manenti, F., Hillestad, M. (2020). Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies. 13(18), 4859. DOI: 10.3390/en13184859.
  • 78. Wang, R.R., Zhao, Y.Q., Babich, A., Senk, D. & Fan, X.Y., (2021). Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Clean. Prod. 329, 129797. DOI: 10.1016/j.jclepro.2021.129797.
  • 79. Ma, Y., Isnaldi R. Souza Filho, I.R.S., Bai, et.al. (2022). Hierarchical nature of hydrogen-based direct reduction of iron oxides. Scripta Materialia, 213, 114571. DOI: 10.1016/j.scriptamat.2022.114571.
  • 80. Abdel Halim, K.S., Ramadan, M., Shawabkeh, A., Abufara, A. (2013). Synthesis and characterization of metallic materials for membrane technology. Beni-Suef University J. Basic Appl. Sci. 2, 72–79.
  • 81. Abdel Halim, K.S. (2012). Novel synthesis of porous Fe–Ni ferroalloy powder for energy applications. Materials Letter, 68, 478. DOI: 10.1016/j.matlet.2011.11.048.
  • 82. Abdel Halim, K.S., Khedr, M.H., Nasr, M.I. & Abdel Wahab, M. Sh., (2008). Carbothermic reduction kinetics of nanocrystallite Fe2O3/NiO composites for the production of Fe/Ni alloy. J. Alloys Compounds. 463, 585–590. DOI: 10.1016/j. jallcom.2008.02.026.
  • 83. El-Geassy, A.A, Abdel Halim K.S. & Alghamdi A.S. (2023). A Novel Hydro-Thermal Synthesis of Nano-Structured Molybdenum-Iron Intermetallic Alloys at Relatively Low Temperatures. Materials, 16(7), 2736. DOI: 10.3390/ma16072736.
  • 84. Abdel Halim, K.S., Bram, M., Buchkremer, H.P. & Bahgat, M. (2012). Synthesis of heavy tungsten alloy by thermal technique. Ind. Engin. Chem. Res. 51(50), 16354–16360. DOI: 10.1021/ie301947e.
  • 85. Al-Kelesh, H., Abdel Halim, K.S., Nasr, M.I. (2016). Synthesis of heavy tungsten alloys via powder reduction technique. J. Mat. Res. 31(9), 2977–2986. DOI: 10.1557/jmr.2016.318.
  • 86. Ahmed, H.M., El-Geassy A.A. & Seetheraman S. (2011). Kinetic studies of hydrogen reduction of NiO-WO3 precursors in fluidized bed reactor. ISIJ Int. 51(9), 1359–1367. DOI: 10.2355/isijinternational.51.1383.
  • 87. Abdel Halim, K.S., Ramadan, M., Shawabkeh, A. & Fathy, N. (2017). Developing nanomaterials for ironmaking processes: Theory and practice. Appl. Mech. Mat. 865, 3–8. DOI: 10.4028/www.scientific.net/AMM.865.3.
  • 88. Abdel Halim, K.S., Khedr, M.H., Soliman, N.K. (2010). Reduction characteristics of iron oxide in nanoscale. Mat. Sci. Technol. 26(4), 445–452. DOI: 10.1179/026708309X12468927349253.
  • 89. Khedr, M.H., Abdel Halim, K.S. & Soliman, N.K. (2009). Synthesis and photocatalytic activity of nano-sized iron oxides. Mat. Letters. 63, 598–601. DOI: 10.1016/j.matlet.2008.11.050.
  • 90. Khedr, M.H., Abdel Halim, K.S., Soliman, N.K. (2008). Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes. Appl. Surf. Sci. 255, 2375–2381. DOI: 10.1016/j.apsusc.2008.07.096.
  • 91. El-Sheikh, S.M., Harraz, F.A., Abdel-Halim, K.S. (2009). Catalytic performance of nanostructured iron oxides synthesized by thermal decomposition. J. Alloys Comp. 487, 716–723. DOI: 10.1016/j.jallcom.2009.08.053.
  • 92. Lyadov, A.S, Kochubeev, A.A., Markova, E.B., Parenago, O.P., Khadzhiev S.N. (2016). Features of Reduction and Chemisorption Properties of Nanosized Iron (III) Oxide. Petroleum Chem. 56(12), 1134–1139.
  • 93. Abdel Halim, K.S., Khedr, M.H., Nasr, M.I., El-Mansy A. (2007). Factors affecting catalytic oxidation of CO over nano-sized Fe2O3. Mater. Res. Bull. 42, 731–741. DOI: 10.1016/j.materresbull.2006.07.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39374089-e812-4942-95c8-e5dbaecad127
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.