PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coordinated design of PSS and TCSC based on Fuzzy controller using global signals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a modified chaotic gravitational search algorithm (CGSA) as a novel heuristic algorithm for coordinate design of fuzzy logic controller-based thyristor controlled series capacitor (FLC-TCSC) and power system stabilizers (PSSs) in multi-machine power system. The coordinate design of PSS and FLC-TCSC damping controllers is converted to a single optimization problem with the time-domain objective function which is solved by the proposed CGSA algorithm which has strong ability for finding the most optimistic results. By minimizing the employed fitness function in which oscillatory characteristics between areas are included, the interactions among the FLC-TCSC controller and PSS under transient conditions in the multi-machine power system are enhanced. The generator speed and the electrical power are chosen as global input signals. The system performance is assessed through the time multiplied absolute value of the error (ITAE), Eigenvalues and figure of demerit (FD) analysis performance indices. The robustness is tested by considering several operating conditions to establish the superior performance with the proposed controller over the other stabilizers.
Rocznik
Strony
106--120
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran
autor
  • Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran
Bibliografia
  • [1] A. Ghasemi, H. Shayeghi, H. Alkhatib, Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm, International Journal of Electrical Power & Energy Systems 51 (2013) 190–200.
  • [2] H. Shayeghi, A. Ghasemi, Multiple pss design using an improved honey bee mating optimization algorithm to enhance low frequency oscillations, International Review of Electrical Engineering 6 (7).
  • [3] A. Khodabakhshian, M. J. Morshed, M. Parastegari, Coordinated design of statcom and excitation system controllers for multi-machine power systems using zero dynamics method, International Journal of Electrical Power & Energy Systems 49 (2013) 269–279.
  • [4] L.-Y. Sun, J. Zhao, G. M. Dimirovski, Adaptive coordinated passivation control for generator excitation and thyristor controlled series compensation system, Control Engineering Practice 17 (7) (2009) 766–772.
  • [5] L. Cong, Y. Wang, Co-ordinated control of generator excitation and statcom for rotor angle stability and voltage regulation enhancement of power systems, IEE Proceedings-Generation, Transmission and Distribution 149 (6) (2002) 659–666.
  • [6] N. Christl, Advanced series compensation with thyristor controlled impedance, CIGRE, 14/37/38-05.
  • [7] B. Agrawal, R. Hedin, R. Johnson, A. Montoya, B. Vossler, Advanced series compensation (asc) steady-state, transient stability, and subsynchronous resonance studies, in: Proceedings of Flexible AC Transmission Systems (FACTS) Conference, Boston, MA, 1992.
  • [8] R. Piwko, C. Wegner, S. Kinney, J. Eden, Subsynchronous resonance performance tests of the slatt thyristor-controlled series capacitor, IEEE Transactions on Power Delivery 11 (2) (1996) 1112–1119.
  • [9] H. Chen, Y. Wang, R. Zhou, Transient stability enhancement via coordinated excitation and upfc control, International journal of electrical power & energy systems 24 (1) (2002) 19–29.
  • [10] A. A. Hashmani, Y. Wang, T. Lie, Enhancement of power system transient stability using a nonlinear coordinated excitation and tcps controller, International journal of electrical power & energy systems 24 (3) (2002) 201–214.
  • [11] L. Cong, Y. Wang, D. Hill, Transient stability and voltage regulation enhancement via coordinated control of generator excitation and svc, International Journal of Electrical Power & Energy Systems 27 (2) (2005) 121–130.
  • [12] N. Mithulananthan, C. A. Canizares, J. Reeve, G. J. Rogers, Comparison of pss, svc, and statcom controllers for damping power system oscillations, IEEE transactions on power systems 18 (2) (2003) 786–792.
  • [13] L.-Y. Sun, J. Zhao, G. M. Dimirovski, Adaptive coordinated passivation control for generator excitation and thyristor controlled series compensation system, Control Engineering Practice 17 (7) (2009) 766–772.
  • [14] P. Pourbeik, M. J. Gibbard, Simultaneous coordination of power system stabilizers and facts device stabilizers in a multimachine power system for enhancing dynamic performance, IEEE Transactions on Power Systems 13 (2) (1998) 473–479.
  • [15] L.-J. Cai, I. Erlich, Simultaneous coordinated tuning of pss and facts damping controllers in large power systems, IEEE Transactions on Power Systems 20 (1) (2005) 294–300.
  • [16] Y. Abdel-Magid, M. Abido, Robust coordinated design of excitation and tcsc-based stabilizers using genetic algorithms, Electric Power Systems Research 69 (2-3) (2004) 129–141.
  • [17] X. Lei, E. N. Lerch, D. Povh, Optimization and coordination of damping controls for improving system dynamic performance, IEEE Transactions on Power Systems 16 (3) (2001) 473–480.
  • [18] H. Shayeghi, A. Safari, H. Shayanfar, Pss and tcsc damping controller coordinated design using pso in multi-machine power system, Energy Conversion and Management 51 (12) (2010) 2930–2937.
  • [19] M. Abido, Pole placement technique for pss and tcsc-based stabilizer design using simulated annealing, International journal of electrical power & energy systems 22 (8) (2000) 543–554.
  • [20] A. Khodabakhshian, R. Hooshmand, R. Sharifian, Power system stability enhancement by designing pss and svc parameters coordinately using rcga, in: Electrical and Computer Engineering, 2009. CCECE’09. Canadian Conference on, IEEE, 2009, pp. 579–582.
  • [21] S. Mishra, Neural-network-based adaptive upfc for improving transient stability performance of power system, IEEE Transactions on Neural Networks 17 (2) (2006) 461–470.
  • [22] Z. Min, L. Wei, Decentralized robust control for power systems with statcom, in: Electrical and Control Engineering (ICECE), 2010 International Conference on, IEEE, 2010, pp. 3520–3524.
  • [23] A. Ghasemi, A fuzzified multi objective interactive honey bee mating optimization for environmental/economic power dispatch with valve point effect, International Journal of Electrical Power & Energy Systems 49 (2013) 308–321.
  • [24] L. C. Saikia, N. Sinha, J. Nanda, Maiden application of bacterial foraging based fuzzy idd controller in agc of a multi-area hydrothermal system, International Journal of Electrical Power & Energy Systems 45 (1) (2013) 98–106.
  • [25] A. Abbadi, L. Nezli, D. Boukhetala, A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multimachine power systems, International Journal of Electrical Power & Energy Systems 45 (1) (2013) 456–467.
  • [26] H. Shayeghi, A. Ghasemi, A multi objective vector evaluated improved honey bee mating optimization for optimal and robust design of power system stabilizers, International Journal of Electrical Power & Energy Systems 62 (2014) 630–645.
  • [27] C. A. Canizares, Power flow and transient stability models of facts controllers for voltage and angle stability studies, in: Power Engineering Society Winter Meeting, 2000. IEEE, Vol. 2, IEEE, 2000, pp. 1447–1454.
  • [28] S. Panda, N. Padhy, R. Patel, Modelling, simulation and optimal tuning of tcsc controller., International Journal of Simulation Modelling (IJSIMM) 6 (1).
  • [29] C. Fuerte-Esquivel, E. Acha, H. Ambriz-Perez, A thyristor controlled series compensator model for the power flow solution of practical power networks, IEEE transactions on power systems 15 (1) (2000) 58–64.
  • [30] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, Gsa: a gravitational search algorithm, Information sciences 179 (13) (2009) 2232–2248.
  • [31] D. Yang, G. Li, G. Cheng, On the efficiency of chaos optimization algorithms for global optimization, Chaos, Solitons & Fractals 34 (4) (2007) 1366–1375.
  • [32] H. Shayeghi, H. Shayanfar, A. Ghasemi, A robust abc based pss design for a smib power system, International Journal on Technical and Physical Problems of Engineering (IJTPE) 3 (2011) 86–92.
  • [33] K. Padiyar, Power system dynamics, BS publications, 2008.
  • [34] T. K. Das, G. K. Venayagamoorthy, U. O. Aliyu, Bio-inspired algorithms for the design of multiple optimal power system stabilizers: Sppso and bfa, IEEE Transactions on Industry Applications 44 (5) (2008) 1445–1457.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39315ba4-a6d3-4f0b-85b7-d15f50caaf80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.