Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Although direct measurements of the fuel injection pressure and the travel of the injector needle in conjunction with measurements of the valve train mechanism timing can provide complete diagnostic information about the technical conditions of the fuel injection and valve train systems, this requires the installation of sensors and other equipment directly into the systems, which is possible within research laboratories but is generally forbidden during operation of the ship. Malfunctions in the fuel injection and valve train systems can also be identified from the indicator diagrams of an engine operating cycle, expressed as P(V) and P(deg) diagrams. The basic parameters of the engine operating cycle, such as the maximum combustion pressure Pmax, compression pressure Pcompr, and indicated mean effective pressure IMEP, can also be used to indicate deviations from proper engine operation. Using a combination of a vibration sensor with an in-cylinder gas pressure sensor widens the capabilities of diagnostics for marine diesel engines under operational conditions. A vibration sensor with a magnetic base can help in determining the timings of the lifting and landing of the injector needle, fuel delivery by the fuel injection pump, opening and closing of the circulation of heated heavy fuel oil, and opening and closing of the gas distribution valves. This also offers a promising solution for diagnostics of the cylinder lubrication oil injectors. The proposed approach allows valuable information to be received during engine operation in accordance with the principle of non-destructive control, and can help in early detection of possible engine malfunctions.
Czasopismo
Rocznik
Tom
Strony
88--96
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Odessa National Maritime University Odesa, Ukraine
autor
- Odessa National Maritime University Odesa, Ukraine
autor
- National Technical University “Kharkiv Polytechnic Institute” Ukraine
autor
- Odessa National Maritime University Odesa, Ukraine
autor
- Odessa National Maritime University Odesa, Ukraine
autor
- Danube Institute of National University «Odessa Maritime Academy» Izmail Ukraine
autor
- Odessa National Maritime University Odesa, Ukraine
autor
- Odessa National Maritime University Odesa, Ukraine
autor
- Odessa National Maritime University Odesa, Ukraine
Bibliografia
- 1. IMO, International Convention for the Safety of Life At Sea, part B. Prevention of fire and explosion, paragraph 2.2.5.
- 2. SOLAS Consolidated Edition 2020. London: International Maritime Organization. 2. Z. Domachowski, “Minimizing greenhouse gas emissions from ships using a Pareto multi-objective optimization approach,” Polish Marit. Res., vol. 28, no. 2, 2021, pp. 96-101, doi: 10.2478/pomr-2021-0026.
- 3. V. Kuznetsov, B. Dymo, S. Kuznetsova, M. Bondarenko, and A. Voloshyn, “Improvement of the cargo fleet vessels power plants ecological indexes by development of the exhaust gas systems,” Polish Marit. Res., vol. 28, no. 1, 2021, pp. 97-104, doi: 10.2478/pomr-2021-0009.
- 4. J. B. Heywood, Internal Combustion Engine Fundamentals. New York: McGraw-Hill Publ., 1988, 930 p.
- 5. S. Neumann, “High temperature pressure sensor based on thin film strain gauges on stainless steel for continuous cylinder pressure control,” CIMAC Congress, Hamburg. Digest, 2001, pp. 1-12.
- 6. P. Puzdrowska, “Diagnostic information analysis of quickly changing temperature of exhaust gas from marine diesel engine. Part I: Single factor analysis,” Polish Marit. Res., vol. 28, no. 4, 2021, pp. 97-106, doi: 10.2478/pomr-2021-0052.
- 7. P. Bzura, “Diagnostic model of crankshaft seals,” Polish Marit. Res., vol. 26, no. 3, 2019, pp. 39-46, doi: 10.2478/ pomr-2019-0044.
- 8. R. Zagan, I. Paprocka, M.-G. Manea, and E. Manea, “Estimation of ship repair time using the genetic algorithm,” Polish Marit. Res., vol. 28, no. 3, 2021, pp. 88-99, doi: 10.2478/pomr-2021-0036.
- 9. R. Varbanets, S. Karianskyi, S. Rudenko, I. V. Gritsuk, A. Yeryganov, O. Kyrylash, and N. Aleksandrovskaya, “Improvement of diagnosing methods of the diesel engine functioning under operating conditions,” SAE Technical Paper, 2017 (No. 2017-01-2218).
- 10. S. Neumann, R. Varbanets, O. Kyrylash, O. V. Yeryganov, and V. O. Maulevych, “Marine diesels working cycle monitoring on the base of IMES GmbH pressure sensors data,” Diagnostyka, vol. 20, no. 2, pp. 19-26, 2019, https:// doi.org/10.29354/diag/104516.
- 11. R. Varbanets, “Diagnostic control of the working process of marine diesel engines in operation,” Dissertation for Doctorate of Technical Sciences, Odessa National Maritime University, 2010.
- 12. R. Varbanets, O. Fomin, V. Píštěk, V. Klymenko, D. Minchev, A. Khrulev, V. Zalozh, and P. Kučera, “Acoustic method for estimation of marine low-speed engine turbocharger parameters,” J. Mar. Sci. Eng., vol. 9, no. 3, p. 321, 2021, http://dx.doi.org/10.3390/jmse9030321.
- 13. O. Yeryganov and R. Varbanets, “Features of the fastest pressure growth point during compression stroke,” Diagnostyka, vol. 19, no. 2, pp. 71-76, 2018, https://doi. org/10.29354/diag/89729.
- 14. R. Varbanets and A. Karianskiy, “Analyse of marine diesel engine performance,” Journal of Polish CIMEEAC. Energetic Aspects, Gdansk, Faculty of Ocean Engineering and Ship Technology Gdansk University of Technology, vol. 7, no. 1, pp. 269-275, 2012.
- 15. J. Girtler, “Limiting distribution of the three-state semi-Markov model of technical state transitions of ship power plant machines and its applicability in operational decision-making,” Polish Marit. Res., vol. 27, no. 2, 2020, pp. 136-144, doi: 10.2478/pomr-2020-0035.
- 16. J. Girtler and J. Rudnicki, “The matter of decision-making control over operation processes of marine power plant systems with the use of their models in the form of semi-Markov decision-making processes,” Polish Marit. Res., vol. 28, no. 1, 2021, pp. 116-126, doi: 10.2478/ pomr-2021-0011.
- 17. R. A. Varbanets, V. I. Zalozh, A. V. Shakhov, I. V. Savelieva, and V. M. Piterska, “Determination of top dead centre location based on the marine diesel engine indicator diagram analysis,” Diagnostyka, vol. 21, no. 1, pp. 51-60, 2020, https://doi.org/10.29354/diag/116585.
- 18. S. Neumann, R. Varbanets, D. Minchev, V. Malchevsky, and V. Zalozh, “Vibrodiagnostics of marine diesel engines in IMES GmbH systems”, Ships Offshore Struct., 2022, pp. 1-12, doi: 10.1080/17445302.2022.2128558.
- 19. D. Minchev, R. Varbanets, N. Aleksandrovskaya, and L. Pisintsaly, “Marine diesel engines operating cycle simulation for diagnostics issues”, Acta Polytechnica, vol. 3, no. 61, pp. 428-440, 2021, http://dx.doi.org/10.14311/ AP.2021.61.0435.
- 20. Blitz-PRO by D. S. Minchev. User’s manual. [Online]. Available: http://blitzpro.zeddmalam.com/ extra/Tutorial/ Help.pdf. date of access: September, 30, 2022.
- 21. D. S. Minchev, et al., “Prediction of centrifugal compressor instabilities for interna.
- 22. A. Młynarczak and K. Rudzki, “Optimisation of the topping-up process of lubricating oil in medium-speed marine engines,” Polish Marit. Res., vol. 28, no. 2, 2021, pp. 78-84, doi: 10.2478/pomr-2021-0024.
- 23. MAN B&W S80ME-C7. Project guide. Electronically Controlled Two-stroke Engines – MAN Diesel, 2009.
- 24. How to succeed with HJ SIP. Service Letter 920166 Revision 10. 2020 [Online]. Available: https://hjlubri.dk/sites/default/ files/920166-10_0.pdf. date of access: September, 30, 2022.
- 25. 6UEC50LSH-Eco-C2 Instruction Book. Kobe Diesel Co., Ltd. EN00-01_50HC(8)(A) _order 1_0, 2020, 357p.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39310dad-86ca-40be-bd14-ec96e11c67e1