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Electronic Circuit Design by Pole and Zero 
Distribution Optimization via the Semi-Symbolic 
Transimpedance Method

Summary: In this work a new method of linear circuit design in frequency domain by poles (zeros) 

distribution optimization is presented. The method, which uses the relationship between poles and 

appropriate sums of circuit time – constants, does not need the poles determination explicitly. New 

relationships, allowing us to calculate the time – constants matrix for circuits having capacitors 

and inductors as reactive elements, have been derived. Thanks to this, the elements of this 

matrix can be counted in a uniform manner by the transimpedance method. In the first stage of 

the method the criterion function is generated in semi–symbolic form, while in the second stage 

the optimization process is performed. The optimization loop does not include circuit equations 

formulation and solution. Thanks to this fact the method proposed appears to be very efficient. The 

examples of optimal capacitors and inductors chosen in such a way as to reach the required transfer 

characteristics have also been included.

Keywords: Computer Aided Design, Electronic Circuit Optimization, Pole and Zero Approximation, 

Symbolic Methods.

Projektowanie układów elektronicznych poprzez optymalizację rozkładu biegunów 

i zer z wykorzystaniem semisymbolicznej metody transimpedancyjnej Badania papieru

Streszczenie: W artykule została przedstawiona nowa metoda projektowania elektronicznych ukła-

dów liniowych w dziedzinie częstotliwości poprzez optymalizację rozkładu biegunów i zer. Metoda, 

w której wykorzystano związek pomiędzy biegunami (zerami) a stałymi czasowymi obwodu nie wy-

maga wyznaczania biegunów explicite. W pracy zostały wyprowadzone nowe zależności pozwala-

jące na wyznaczenie macierzy stałych czasowych układu zawierającego zarówno kondensatory jak 

i cewki. Dzięki temu elementy tej macierzy są obliczane w jednakowy sposób metodą transimpedan-

cyjną. W pierwszym etapie prezentowanej metody jest wyprowadzana funkcja kryterialna w postaci 

semisymbolicznej, podczas, gdy w etapie drugim jest przeprowadzany proces optymalizacyjny. Tak 

więc, pętla optymalizacji nie obejmuje formułowania równań układu i ich rozwiązywania. Dzięki 

czemu proponowana metoda okazała się bardzo efektywną pod względem wymaganego czasu ob-

liczeń. Zostały załączone przykłady optymalnego doboru pojemności i indukcyjności w taki sposób, 

aby układy posiadały wymagane charakterystyki częstotliwościowe. 

Keywords: Projektowanie wspomagane komputerowo, optymalizacja układów elektronicznych, 

aproksymacja biegunów i zer, metody symboliczne.
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1. Introduction
The proper selection of electronic elements during the designing of electronic circuits 

in frequency domain ensures the proper shapes of network characteristics. The optimal 

parameter chosen in such a way as to reach the demanded transfer characteristics can 

be performed in different ways. 

One of them is the method called the frequency domain optimization [1] in the loop 

of which the formulation as well as solution of the circuit equations is performed. In this 

approach the demanded frequency characteristics (such as magnitude, phase or delay 

characteristics) are approximated by actual characteristics using an optimization method 

operating on a determined set of parameters. This method very often suffers from weak 

convergence because of ill-conditioning of the hessian matrix (many local minima and 

deep winding valleys exist). Therefore, this is rather an extremely time consuming method 

and requires fast analysis and effective optimization methods.

Another approach is the optimization on the complex plane. Although several 

numerical methods for poles determination exist such as QR or QZ [3, 4, 15], there is no 

efficient numerical method for their calculation, especially for large circuits [5]. The 

necessity of poles determination at each step of the optimization process makes these 

methods rather cumbersome. Though the eigenvalue approach is more numerically stable 

than that basing on calculating polynomial coefficients [7], the big disadvantage of these 

methods is that the eigenvalue–finding stage often encounters singular matrices due to 

the topological structure of the network. On the other hand, the determination of poles 

and zeros in symbolic form is very complicated, particularly in the case of more than 

four poles/zeros (pole splitting method [3], state variable method [6]). Moreover, some 

symbolic approximated methods can suffer sometimes from their insufficient accuracy 

(matrix approximation method [8]). The coefficients matching method also belongs to 

this group [1, 9]. This method needs to have at its disposal symbolic representation of the 

network function, which becomes useless in the case of large circuits. The interpolative 

approach to symbolic analysis represents some solutions to this problem [10]. 

In this work a new semi-symbolic method of linear circuit design in frequency domain, 

which does not need the poles and zeros calculation explicitly, is presented. The main idea 

of the method relies on the fact that in the first stage the criterion function is generated 

in semi – symbolic form. In the second stage the optimization process is performed. The 

optimization loop does not include circuit equations formulation and their solution. 

Thanks to this fact the method proposed appears to be very efficient. As the criterion 

function, the relationship between poles (and zeros) and appropriate sums of circuit time 

– constants have been applied. In work [11] this method was applied to circuits having 

capacitors only as reactive elements. In this work, by using a modified nodal matrix 

description of the network as well as by generalization of transresistance and time
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constants matrices, this method was applied to the circuits having both type of elements 

– capacitors and inductors. A generalization of Haley’s time –constants matrix has been 

developed here, which allows us to recognize whether and why the optimization task 

is solvable or not, as well as thanks to these relationships, the elements of the time-

constant matrix can be counted in a uniform manner by the transimpedance method. 

This approach simplifies the whole algorithm.

In Section II the theoretical background of the method has been delivered. In Section 

III the optimization task has been formulated. Section IV details the algorithm and 

computational testing of the new method. 

2. Theoretical background of the Method

2.1. Transfer functions
Let’s consider a linear, time-invariant and lumped electronic circuit, which is described 

by the nodal (or modified nodal) equation [5]

 (1)

where: Y – nodal (or modified nodal) matrix, V – vector of node voltages (or node 

voltages and currents added for independent voltage sources and inductors), w – vector 

of independent currents (or independent source currents and independent source 

voltages).

Assuming that the system output is dTV, the network transfer function H(s) for a single 

input win 
can be expressed as [3]:

 
(2)

where: detY – the main determinant of matrix Y,

Ỹ(w
in

,d) – is the Y matrix with in – th row replaced by the dT vector. 

The network poles p
i
 are the values of s such that detY = 0, and transfer function zeros 

z
i
 are values of s such that detỸ(w

in
,d). Hence the network function H(s) can be expressed 

in the form

 
 (3)

this corresponds to the rational representation:

 

  (4) 

where: p
i
(x), z

j
(x) – poles and zeros of the transmittance, respectively, a

i
 = a

i
(x), b

i
 = b

i
(x) 

– real coefficients, x = [x
1
, x

2
,..., x

M
]T – vector of circuit parameters. H

0
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H(s)= detỸ(win,d)/detY
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b
0
 = 1,

Poles and zeros can be real or conjugate complex. Because the calculation of 

zeros is performed in the same way as calculation of poles by using one rank modified 

admittance matrix, our further considerations will concern the denominator coefficients 

b
i
 determination only.

2.2. Poles
The relationship between poles and polynomial coefficients has the well – known 

form of symmetric functions:

 (5a)

 (5b)

 (5c)

 (5d)

On the other hand, the characteristic equation resolved from the determinant

  (6)

is

 (7)

  

where: λ = – 1/s. 

Knowing the relation between the characteristic polynomial coefficients and 

appropriate entries of the Y matrix, we are able to express the coefficients b
i
 (5) as 

functions of these entries.

To find these relationships two cases of the parameter vector x will be considered.

Case of capacitance vector

  (8)

The admittance matrix Y can be formulated as a sum: 

  
(9) 

where: G and C are the conductance and capacitance (nxn) matrices, respectively.

The generalized eigenvalues equation corresponding to (9), from which the poles of 

the circuit can be determined is:

 (10)

where: z – is an eigenvector of Y.

b
1 
= Σ

m
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pi
1

b
1 
= Σ

m-1
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1 Σ
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b
m

 = 1/(P
1
P

2
...P

m
).

det(Y) = det(G+sC) = 0

Q(λ) = λn + σ1λn-1
 + ... + σ

n-1
 λ + σ

n 
= 0

x = [C
1
, C

2
, …, C 

nc
]T,

Y = G + sC, 

(G + sC)z = 0, 
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In work [2] it was shown, that, if a circuit has n
c
 capacitors Cα, α = 1,…, n

c
, then the 

matrix C can be decomposed in the form: 

 

 (11)

where: A
c
 – is an n × n

c
 incidence matrix for the capacitors. 

If a capacitor Cα is connected between nodes k and l, then each column α in A
c
 is the 

connection vector: qα 
= e

k 
– e

l
. Diagonal n

c
 × n

c
 matrix C’ has diagonal elements: Cα, α = 1,..., 

n
c
. It was further shown that if dc poles are assumed to not exist (i.e. R = G-1 exists), then 

applying (11) and after some transformations the equation (10) can be formulated in the 

reduced form:

 (12)

 

where: z
nc

 = AT
c 
z – transformed n

c
 -dimensional eigenvector, for s ≠ 0, λ = 1

s
,   (13)

I
nc

 – is n
c
 – dimensional identity matrix. 

The entries of the n
c
 × n

c
 T matrix known as the time-constant matrix defined by: 

 (14)

are equal to

  (15)

where: Rαβ– is the transresitance between ports β and α.

If the capacitors are independent (e.g. capacitor loops don’t exist), rank T = rank C = n
c
, 

then n
c
 finite poles of the network are determined by the eigenvalues of the matrix T: 

 

 (16)

B The case of capacitance and inductance vector

Let us consider now the n – node circuit containing n
C
 capacitors and n

L
 inductors, 

 
 (17)

for which the modified (MNA) nodal matrix Y with part exposed inductance will be 

partitioned as a sum of block matrices [5,17]:

  
 (18) 

where: G and C are the conductance and capacitance n x n matrices, respectively,

L' = diag(L) – diagonal inductance n
L
 × n

L
 matrix

A
L
 – inductance incidence n × n

L 
matrix.
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The generalized eigenvalue equation corresponding to (18), from which the poles of 

the circuit can be determined, is:

 
 (19)

where: z̃ is an eigenvector of (n+ n
L
) x (n+ n

L
) matrix Ỹ.

Although the poles distribution determination basing on eq. (19) is possible, the 

knowledge concerning the existence of its solution or the reasons for the nonexistence 

of this solution is not attainable. To overcome this problem, the equation (19) will be 

transformed to the form similar to that like (12).Taking into account (11) the generalized 

eigenvalue equation (19) can be formulated as

 

  (20)

where: I – is n + n
L
 – dimensional identity matrix, C = dia g (C). 

Using the block matrix inversion method and some matrix manipulations one gets

 (21)

where: z
M

 – transformed M = n
C
 + n

L
 – dimensional eigenvector, for s ≠ 0, λ = 1

s
,

I
M

 – is M-dimensional identity matrix.

The details of the transformation of eq. (20) to suitable form (21) as well as determination 

of the entries of the generalized time-constant M×M matrix T̃ can be comprehensibly 

explained using the following theorem.

Theorem 1

If the conductance matrix G and transresistance matrix R
LL 

= AT
L
G–1A

L
 formulated for the 

circuit described by the modified nodal admittance matrix (18) are nonsingular, then the 

eigenvalue equation (21) will exist corresponding to this matrix with generalized time-

constant M×M matrix T̃ , which can be defined as a matrix partitioned: 

 
 (22)

having the following parts:

  (23a)

           (23b)

 
(23c)

 (23d)

where:  

  (24)
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O    –Ĺ[( ])+ ss-1 I + z̃ = 0

(T̃ – λ Ι)ZM = O

T
I
 T

II
T

III
  T

IV
[ ] T̃ =

  T̃
I
 = [(R

LL
)]

 
– R

CL
R

LL
–1R

LC
) C'

  T̃
II
 = R

LL
–1L'

  T̃
III
 = R

LL
–1R

LC 
C'

  T̃
IV
 = R

LL
–1L'

R
LL 

=
 
A 

L
T RA

L

Ksi ga1.indb   14 2017-03-29   13:19:47



Electronic Circuit Design by Pole and Zero Distribution    Optimization - via the Semi - Symbolic Transimpedance Method

15

is the transresistance n
L
 × n

L
 matrix determined between inductor ports;

C' = diag(C), L' = diag(L), and R = G-1,

 
(25)

is the transresistance n
c
 × n

c
 matrix determined between capacitor ports, 

  (26)

is the transresistance n
c
 × n

L
 matrix determined between capacitor and inductor ports, 

and finally,

 (27)

is the transresistance n
L
 × n

c
 matrix determined between inductor and capacitor ports.

The proof of this theorem is delivered in Appendix A.

The matrix T̃ can be expressed as a multiplication of two matrices 

 (28)

where:

  (29)

is the generalized transresistance matrix and

 

 
(30) 

is the extended diagonal matrix, C' = diag(C), L' = diag(L) . 

It should be noticed that if the capacitors and inductors are independent (e.g. capacitor 

loops or inductor cut sets do not exist), rank T̃ = M, then M finite poles of the network will 

be given by the eigenvalues of the matrix T̃ : 

  

 (31)

2.3. The relationship between poles (zeros) and time constants
Let’s consider a circuit with n

c
 capacitors and n

L
 inductors for which the generalized 

time-constant matrix T̃, having eigenvalues, λ
i
, i = 1, 2, …, M, exists. The scalar invariant 

constraints for traces of T̃ matrix can be expressed in the following compact form [2]:

  (32)

where: k = 1, 2, …, r,
  

r = rank T̃ ≤ M.
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Taking into account relationship (31), the constraints in (32) are given consecutively by

           

  (33a)

  (33b)

  (33c) 

  

 
(33d)

Generally, we can tell that traces are some functions of poles (zeros):  . 

On the other hand the traces can be estimated by time – constants:
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where: D
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2.4 Determination of two – port transresistances
In this work, the so called transimpedance method is proposed for the determination 

of transresistances [11, 12, 14]. Consider the two – port shown in Fig. 1 in which the circuit 

resulting after extracting all capacitors and inductors, short – circuiting all independent 

voltage sources and open – circuiting all independent current sources is characterized by 

the conductance matrix G. Port β = ( β 
1
, β 

2
) is formed by extracting element Dβ and port α 

= (α
1
, α

2
) is formed by extracting element Dα. Dividing voltage Vα (measured at port α) by 

excitation current Iβ (at port β ) we get the transresistance from port β  to port α which can 

be expressed by elements of the matrix R = G-1: 

Figure 1. Explanation of the transresistance Rαβ definition.

  (35)

where: r
ij
 represents the entry from the i – th row and the j – th column of R, α

i
, i = 1, 

2 – pair of natural numbers representing nodes of port α. The entries of G-1 matrix, as it is 

well – known, can be determined by:

 (36) 

where: ∆
ji
 = (-1)i+j M

ji
 is the ji – th cofactor of G, det G = |G| ≠ 0 is the main determinant 

of G.

Application of the LU – factorization method speeds up the whole process 

of transresistance calculation significantly. It should be pointed out that these 

transresistances can be obtained also in symbolic form, if needed [12]. Consider a two 

– port shown in Fig. 2. Denote its input terminals as a pair i = (i
1
, i

2
) and its output terminals 

as o = (o
1
, o

2
). Let the elements extracted Dα be connected to pairs of nodes α = (α

1
, α

2
), 

α = 1, 2… M. All kind of transresistances (24) – (27) can be determined using the method 

delivered above. Although zeros can be determined in the same way as poles for modified 

admittance matrix Ỹ (win, d) they can be also obtained by the method delivered above with 

only small modification of the time – constants matrix T [2,3,14].

Rαβ = Vα / Iβ, 
22122111),( βαβαβαβα rrrrR +−−== βα

  , = 
 

r 
jiji

j+i 

ij
GG det det 

M)(-1 ∆
=
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Figure 2. Network prepared for time – constant matrix calculation.

3. Optimization Task

The goal of the optimization task is to find such circuit parameters, for which the 

network function will meet the re quirement shape. The optimization task is formulated 

in the following way:

  (37a)

where:   (37b)

The feasible solutions are constrained by the following set of parameters:

 (37c)
 

When all finite poles are taken into account in this task, the number of equations 

should be equal to the number of para meters (variables): r = M = jmax and the following 

relation should be fulfilled: 

  (38a)

In this case the absolute minimum should reach value 0, but in cases when some 

insignificant poles are neglected: 

 
 (38b)

To avoid the unstable solutions, the not important poles should be moved to infinity 

(to very high frequencies). The set of parameters should be restricted appropriately, in 

accordance with the demands of their range of work. To avoid operating large numbers 

during optimization process, the criterion function (37b) can be normalized:

  (39)

mim [F{x)/ x € X(x)}

X(x
1
) = {x

1
Ix

mini 
≤

  
x

1 
≤

 
x

maxi 
} , i = 1, 2, …, M. 

.,...,2,1,
~

MjTT jj ==

M ≥ r = jmax and .,...,2,1,
~

rjTT jj ==
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Basing on the method presented the universal computer program SemiSymPolOpt 

was written in MS Visual Basic computer language. The main computational effort of this 

program is devoted to the derivation of the functions (34) in semi symbolic form and the 

generalized time constants matrix (22). Derived relationships allow us to identify what 

causes the task to be unsolvable. The computer program monitors these cases (when 

matrices G and/or R
LL

 are singular).

As the optimization method, the Rosenbrock procedure with constraints [13] was 

applied. As the stopping criterion the minimal value of criterion function was applied: F < ε. 

If this condition is not met, then the program will continue calculations until the number 

of function evaluations will reach the required number: L < L
max

 and then the Rosenbrock 

procedure can be followed by the Fletcher-Reeves procedure [13]. For the Fletcher-Reeves 

procedure the computer program generates gradients in semi-symbolic form, too. Special 

attention should be paid to the choice of starting points. In this matter an important 

role is played by the engineer’s knowledge. The computer program is supplied with the 

automatic (random) choice of starting points as an option. The computer program was 

supplied with QR procedure [15], which can be used, optionally, once if the user wants to 

verify the results of optimization. 

4. Algorithm and Computational Experiments 

The Algorithm

Basing on the theoretical background delivered above, the following algorithm was 

formulated:

Step 1. Determine poles (zeros), which have to be realized basing on requirements 

concerning the shape of the network characteristics demanded.

Step 2. Identify capacitor and inductor ports: α = (α
1
, α

2
), α = 1, 2, ..., M. 

Step 3.  Extract all capacitors and inductors: Dα, α = 1, 2,... M. and short-circuit independent 

voltage sources, and open-circuit independent current sources.

Step 4. Formulate the conductance matrix G.

Step 5. Determine the transresistances needed R
ij
.

Step 6. Calculate the appropriate elements of the generalized time – constant matrix: 

                          .

Step 7. Calculate the appropriate cofactors of the matrix traces: T
1
,..., T

M
 and write in semi-

symbolic form (34) and form equations (38).

Step 8. Form the criterion function and solve the task (37). 

βαβαβ DRT =
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Derived relationships (theorem1 and (34) and (35)) allow us to identify what causes 

the task to be unsolvable and, thanks to these relationships, the elements of the time-

constant matrix can be counted in a uniform manner by the transimpedance method. 

This approach simplifies the whole algorithm.

B. Examples: Example1

Let’s consider the two stage common emitter broad-band amplifier, of which small 

signal PSPICE model schematic is shown in Fig. 3. 

Figure 3. Small-signal equivalent of a two – stage amplifier prepared for poles optimization.

The transconductances G1 and G2 are equal to 21mS. The following schedule of poles 

was accepted: p1 = –1e2 rad/s, p2 = –1e3 rad/s, p3 = –3.26e6 rad/s (Fig. 4.), which corresponds 

to the following cutting frequencies: f
1
 = 15.9 Hz, f

2
 = 159 Hz, f

3
 = 519 kHz.

Figure 4. Demanded distribution of poles:     

The ranges of changeability of parameters were limited as follows: C
min1

 = C
min3

 = 1e3 

pF, C
min2

 = 1e-3 pF, C
max1

 = C
max2

 = C
max3

 = 1e7 pF. The SemiSymPolOpt computer program 

basing on the input data concerning the circuit structure and element values generated 

the equations (38a):

– 1.10E7 = – 2.00E0*C1 – 3.51E1*C2 – 4.00E0*C3

1.00E13=+7.02E1*C1*C2+8.00E0*C1*C3+ 7.17E1*C2*C3

 – 3.07E15 = – 1.43E2*C1*C2*C3;

and the goal function in semi – symbolic forms (computer printouts):

F = ( 1 – ( – 2.00E0*X(1) – 3.51E1*X(2) – 4.00E0*X(3)) / ( – 1.10E7) )^2 + ( 1 – ( +

7.02E1*X(1)*X(2) + 8.00E0*X(1)*X(3) + 7.17E1*X(2)*X(3)) / ( + 1.00E13) )^2 + ( 1 – ( -

1.43E2*X(1)*X(2)*X(3)) / ( – 3.07E15) )^2.
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Next, starting from the point: x0 = [1e5, 1e3, 1e5]T (pF), the optimization procedure 

after 2111 function evaluations reached the minimum at x* = [0.499285e6, 17.11668e1, 

2.502392e6]T (pF), which corresponds to the following capacitors: C1 ≈ 500 nF, C2 ≈ 17 pF 

and C3 ≈ 2.5 µF. 

Figure 5. Magnitude of voltage transmittance.

The function value at the optimal point is equal to 0.00000078, which fulfils the global 

solution. Next, taking resulted capacitor values, the considered circuit was analysed 

by the PSPICE computer program [16]. The obtained transfer characteristic: dB (V
out

/

V
in

) (see Fig. 5) confirmed the demanded shape – its exact examination shows accuracy 

of calculation. 

Example 2

Let’s consider the one stage common emitter broad-band amplifier, of which the 

small signal PSPICE model schematic is shown in Fig. 6.

Figure 6. Small-signal equivalent circuit of one – stage amplifier prepared for poles optimization.
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The transconductance G2 is equal to 10mS. The schedule of demanded poles was the 

following: lower dominant pole p1 = – 0.909e2 rad/s, double upper poles p2 = p3 = – 4e7 

rad/s, which correspond to the following cutting frequencies: f
1
 = 14.47 Hz, f

2
 = f

3
 = 6.36 

MHz. It should be noticed that first and second upper poles are not split e.g. the inequality 

p2 << p3 is not fulfilled. As a starting point the following parameter vector was taken: x0 = 

[C1, C2, L1]T = [1 pF, 0.1 µF, 100 µH]T. The set of feasible parameters was restricted by the 

following constraints:

0.1 pF < C1 < 100 pF

0.001 µF < C2 < 100 µF

0.1 µH < L1 < 1000 µH

Figure 7. Magnitude of voltage transmittance at the starting point.

The magnitude of the voltage transmittance at the starting point is shown in Fig. 7 

(Tvo = 38.344 dB). As we see, the lower pole is nearby 145,26 Hz, while both upper poles 

constitute the complex conjugate pair, which appears in the form of resonant shape with 

f
0
 = 48.214 MHz and peak value + 4.8 dB. The SemiSymPolOpt computer program basing 

on the input data concerning the circuit structure and element values generated the 

equations (38a) in semi – symbolic form (computer printouts): 

- 1.100115011001E7 = -9.090909090909E0*C1 – 1.100000000000E1*C2 – 9.090909090909E-

3*L1; +5.500556305006E8 = + 1.000000000000E2*C1*C2 + 9.090909090909E-

1*C1*L1+1.000000000000E-1*C2*L1; -6.875687568757E9 = – 1.000000000000E1*C1*C2*L1

and the goal function:
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F1=(1-(-9.090909090909E0*X(1)-1.100000000000E1 *X(2) -9.090909090909E-3*X(3))/

(- 1.100115011001E7) )^2 + ( 1 – ( + 1.000000000000E2*X(1)*X(2) + 9.090909090909E-

1*X(1)*X(3) + 1.000000000000E-1*X(2)*X(3)) / ( + 5.500556305006E8))^2 + (1-(-

1.00000000000E1 *X(1)*X(2) *X(3)) /(-6.875687568757E9) )^2

Next, starting from the point: x0 the optimization procedure after 3735 function 

evaluations reached the minimum at x* = [5.37202017 pF, 1.0001005 µF, 127.977836 µH]T, 

which corresponds to the following values of capacitors and inductors: C1 ≈  5.4 pF, 

C2 ≈ 1µF and L ≈  127 µH. The goal function at the optimal point reached value 3.9 e-13 

which fulfils the stopping criterion (global solution). Next, taking resulting element 

values, the considered circuit was analysed by 

Figure 8. Magnitude of voltage transmittance in optimum

the PSPICE computer program. The obtained transfer characteristic: dB  (V
out

/V
in

)  

(see Fig. 8) confirmed demanded shape. Its exact examination shows accuracy of 

calculation. As we see, the method can handle the tasks consisting of multiple poles. 
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Conclusions

In this work a new method of linear circuit design in frequency domain by poles 

(zeros) distribution optimization is proposed. The optimization procedure uses criterion 

function in semi – symbolic form, which is derived only once, basing on semi – symbolic 

representation of the time – constant matrix and its traces expressed via the appropriate 

transresistances. Moreover, it does not require calculating poles in an optimization 

loop repeatedly. Thank to these facts, this method appeared to be very efficient. Many 

computational tests confirmed this observation as well as its accuracy. Furthermore, 

the poles need not be separated. It should be pointed out that the method has been 

extended easily to inductances, by determining a few additional transresistances. Derived 

relationships allow us to identify what causes the task to be unsolvable and, thanks to 

these relationships, the elements of the time-constant matrix can be counted in a uniform 

manner by the transimpedance method. The proposed method can be successfully used 

for precise tuning of the electronic circuit in frequency domain.

Appendix A: Proof of Theorem 1
It was shown that taking into account relationship (11) the generalized eigenvalue 

equation (19) 

can be formulated as   

where: I – is n + n
L
 – dimensional identity matrix.

Using block matrix inversion method one gets

 

 (A1)

where: (A2)

 (A3)

 (A4)

 (A5)

where:  (A6)

, 
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The existence of K
ij
 matrices results from the nonsingularity of matrices G andRLL  

that was assumed in the theorem. Substituting (A2 – A5) to (A1) and multiplying the block 

matrices we get

 (A7)

After expanding K
ij
 matrices the equation (A7) takes the following form 

  

 (A8)

Multiplying left side eq. (A8) by matrix                       , and excluding this matrix on the 

right side, we get

 (A9)

  

 
(A10)

where: z
M

 = Hz – transformed M-dimensional eigenvector, I
M

 – is M-dimensional identity 

matrix.

Introducing definitions of new transresistances (24), (25), (26) and (27) one gets the 

matrix

 

 

   
(A11) 

that fulfills the theorem demands.      

q.e.d.
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