PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective harvesting of braking energy in electric cars

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Regenerative braking and damping are effective approaches for electric cars to extend their driving range. A disk Faraday generator regenerative braking strategy integrated with controlled charging of a supercapacitor is developed in this article to advance the level of energy-savings on the car board. The kinetic energy of the car suspension during driving regenerated effectively to electric energy by using shock absorber is harvested and then used to charge the vehicle’s battery, the power electronics and the supercapacitor. One of the advantages of supercapacitors is their high power capability, which is applicable for high rate of charging and discharging operations like motor starting and regenerative braking of an electric vehicle. This article presents a new charging method for supercapacitors. Common for regenerative braking and damping chargers for supercapacitors are usually equipped with electronic PWM converter performing two states of operation per switching cycle. A simple open-loop control system is applicable for the whole charging state. The proposed circuit consists of a minimum number of components. It is free of stability problem and protects itself from being overloaded by supercapacitor with zero initial charge. Simulation results for regenerative braking processes corresponding to three velocity tests are included.
Twórcy
autor
  • University of Ecology and Management in Warsaw Olszewska Street 12, 00-792 Warsaw, Poland tel. +48 22 8471005, fax: +48 22 8258031
Bibliografia
  • [1] Briand, D., Yeatman E., Roundy, S. (eds.), Micro Energy Harvesting, Wiley-VCH, Weinheim, 2015.
  • [2] Chan, M. S. W., Chau, K. T., Chan, C. C., Effective Charging Method for Ultracapacitors, Journal of Asian Electric Vehicle, Vol. 3, No. 2, pp. 771-776, 2005.
  • [3] Cottone, F., Introduction to Vibration Energy Harvesting, NiPS Energy Harvesting Summer School, August 1-5, 2011.
  • [4] Eberhard, M., Tarpenning, M., The 21st century electric car. Tesla Motors Inc. 6 October 2006.
  • [5] Engel, T. G., Kontras, E. A., Analysis and design of homopolar motors and generators, 17th International Symposium on Electromagnetic Launch Technology (EML), IEEE, La Jolla, CA, USA, 7-11 July, 2014.
  • [6] van Essen, H., Kampman, B., Impacts of electric vehicles – Summary report. Publication number: 11.4058.26. www.cedelft.eu, Delft, April 2011.
  • [7] Demetgul, M., Guney, I., Design of the Hybrid Regenerative Shock Absorber and Energy Harvesting from Linear Movemen, Journal of Clean Energy Technologies, Vol. 5, No. 1, pp. 81-84, 2017.
  • [8] Faraday Generator, eskola.hfd.hr/icm/.../14.%20%20Faraday%20Generator.pdf.
  • [9] High Current Compact Generator, magniX Technologies Pty Ltd., Arundel, QLD 4214, Australia, 2016, www.magniflux.com, 2016.
  • [10] Kim, J., Cottone, K. F., et al., Energy scavenging for energy efficiency in networks and applications, Bell Labs Technical Journal, Vol. 15, No. 2, pp. 7-29, 2010. 421
  • [11] Matak, M., Šolek, P., Harvesting the Vibration Energy. American Journal of Mechanical Engineering, Vol. 1, No. 7, pp. 438-442, 2013; doi: 10.12691/ajme-1-7-57, 2013.
  • [12] Mazurkiewicz, A. (ed.), Nanosciences and nanotechnologies. Present state and development perspectives. Institute of Exploitation Technology − State Research Institute, Radom, 2007.
  • [13] Nezhad, M. B., Study of Homopolar DC Generator, Ph.D. Thesis, The University of Manchester,Manchester, 2012, https://www.escholar.manchester.ac.uk/uk-ac-man-scw:19941, 2012.
  • [14] Park, G., Overview of Energy Harvesting Systems, Los Alamos National Laboratory, www.sciepub.com/reference/27519.
  • [15] Priya, S., Inamn, D. (eds.), Energy Harvesting Technologies. Springer, Berlin, 2008.
  • [16] Stevic Z., Radovanovic I., Energy Efficiency of Electric Vehicles, in Stevic Z. (ed.): New Generation of Electric Vehicles, In Tech, Rijeka, 2012.
  • [17] Trzaska, Z., Impact and chaotic phenomena in nonlinear nonsmooth electrical dynamical systems. KONES, Vol. 91, No. 3, pp. 77-85, 2015.
  • [18] Trzaska, M., Trzaska, Z., Nanomaterials Produced by Electrocrystallization Method. in: Aliofkhazraei, M., Makhlouf, A. S. H. (eds.), Handbook of Nanoelectrochemistry, Springer, Basel, 2015.
  • [19] Trzaska, Z., Experiments with disk Faraday Generator, Proceedings of the Conference Progress in Applied Electrotechnics, Kościelisko, Poland, 23-27 June, pp. 251-260, 2003.
  • [20] Trzaska Z., Dynamic processes in the electric drive system in the urban traffic, Transport miejski i regionalny, No. 11, pp. 26-31, 2013.
  • [21] Wheel to Well Analysis of EVs. MIT Electric Vehicle Team. MIT. April 2008.http://web.mit.edu/evt/summary_wtw.pdf, 2008.
  • [22] Wolf, E. L., Nanophysik und Nanotechnologie. Wiley-VCH, Weinheim, 2015.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-392878b5-cfeb-4bf6-9546-192af98d58f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.