PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and corrosion resistance analysis of composite polyurethane wind turbine blade materials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To enhance the rain erosion resistance of wind turbine blade leading-edge protection materials, a series of modified polyurethane (PU) composites were developed by optimizing the synthesis process of PU prepolymers – specifically by tuning the isocyanate (NCO) content, selecting polycaprolactone diols (PCL) with different molecular weights, and introducing an organic titanium catalyst (2210) and hydroxy-terminated polydimethylsiloxane (HO-PDMS). The effects of these components on the mechanical properties, rain erosion resistance, and thermal stability were systematically investigated. Results showed that optimizing the NCO content balanced strength and toughness, achieving a tensile strength of 25.0 MPa at 6% NCO and peak hardness (94.2 Shore A) at 9% NCO. Higher molecular weight PCL (2,000 g/mol) significantly enhanced tensile strength (27.72 MPa) and elongation at break (395.2%) due to improved microphase separation. The addition of 0.03 wt% catalyst 2210 reduced demolding time to 49 min and improved mechanical properties. PU containing 7 wt% HO-PDMS (Mn = 1,000 g/mol, sample SPU7) exhibited optimal rain erosion life (31.6 h), superior thermal stability, and high storage modulus. However, excessive HO-PDMS (e.g., SPU9) led to interfacial defects. This study provides a promising strategy for developing long-lasting, high-reliability protective materials for wind turbine blades.
Wydawca
Rocznik
Strony
23--39
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Power Grid Disaster Prevention and Reduction (Disaster Prevention and Reduction Center of State Grid Hunan Corporation) Changsha, China
  • State Key Laboratory of Power Grid Disaster Prevention and Reduction (Disaster Prevention and Reduction Center of State Grid Hunan Corporation) Changsha, China
Bibliografia
  • [1] Hu, J., Min, C., Yang, X., Wang, K., Xie, L., Numerical andexperimental study on heat transfer characteristics of single vibrating blade in a channel flow, J. Therm. Sci.,2023, 32(3): 982–992. doi:10.1007/s11630-023-1814-y
  • [2] Tian, L., Li, L., Hu, H., Hu, H., Experimental study of dynamic ice accretion process over rotating aeroen-gine fan blades, J. Thermophys. Heat. Trans., 2023, 37(2): 353–364. doi:10.2514/1.T6667
  • [3] Brijder, R., Helsen, S., Ompusunggu, A.P., Switching kalman filtering-based corrosion detection and prognostics for offshore wind-turbine structures, Wind,2023, 3(1): 1–13. doi:10.3390/wind3010001
  • [4] Zhang, X., Zhang, Z., Yu, F., Dual-responsive PU inverse photonic crystal film with high flexibility for anti-counterfeiting, J. Mater. Chem. C., 2023, 11(35): 11936–11942. doi:10.1039/d3tc02444j
  • [5] Mirzaee, M., Mohebbi, T., A review of anti-corrosion and erosion protective coatings in offshore wind power devices, J. Stud. Color. World, 2024, 14(2): 133–159. doi:10.30509/JSCW.2024.82001
  • [6] Ye, X.A., Zhou, X., Zeng, X.Y., Wang, G.G., Conductive composite inks comprised of waterborne polyurethane, silver nanosheets, and heat-treated MXene nanosheets for electromagnetic shielding and thermal management, ACS Appl. Nano Mater., 2024, 7(16): 19075–19088. doi:10.1021/acsanm.4c02902
  • [7] Minoofar, G., Kandeloos, A.J., Koochaki, M.S., Momen, G., Progress in icephobic coatings for wind turbine protection: Merging chemical innovation with practical implementation, Crystals, 2025, 15(2): 139–142. doi:10.3390/cryst15020139
  • [8] Huang, M., Huang, Y., Yang, H., Li, W., Ti3C2Tx MXene/Fe3O4/carbon fiber fabric/water polyurethane composite fabrics for electromagnetic interference shielding and thermal management, ACS Appl. Nano Mater., 2024, 7(13): 14921–14935. doi:10.1021/acsanm.4c00639
  • [9] Hao, Y., Niu, Z., Yang, J., Wang, M., Liu, H., Qin, Y., et al., Self-powered terahertz modulators based on metamaterials, liquid crystals, and triboelectric nanogenerators, ACS Appl. Mater. Interfaces, 2024, 16(25): 32249–32258. doi:10.1021/acsami.4c04251
  • [10] Zuo, D., Jia, Y., Xu, J., Fu, J., High-performance microwave absorption materials: Theory, fabrication, and functionalization, Ind. Eng. Chem. Res., 2023, 62(37): 14791–14817. doi:10.1021/acs.iecr.3c02150
  • [11] Tuo, K., Li, J., Li, Y., Liang, C., Shao, C., Hou, W., et al., Construction of hierarchical porous and polydopamine/salicylaldoxime functionalized zeolitic imidazolate framework-8 via controlled etching for uranium adsorption, Mater. Horiz., 2024, 11(14): 3364–3374. doi:10.1039/d3mh02108d
  • [12] Chai, C., Ma, Z., Yin, X., Pang, H., Self-lubricating and self-healing polyurethane nanocomposites based on aminated-Ti3C2Tx, ACS Appl. Nano Mater., 2024, 6(5): 2513–2523. doi:10.1021/acsapm.3c02629
  • [13] Ma, Y.J., Wang, J.W., Zhuang, G.C., Zhang, Y., Zhang, Z.L., Zhang, M.Y., et al., Polysulfide polyurethane-urea-based dielectric composites with CeO2-loaded MXene exhibiting high self-healing efficiency, J. Mater. Chem. C., 2023, 11(36): 12261–12269. doi:10.1039/d3tc02101g
  • [14] Bose, N., Danagody, B., Rajappan, K., Ramanujam, G.M., Anilkumar, A.K., Sustainable routed Mxene-based aminolyzed PU/PCL film for increased oxidative stress and a pH-sensitive drug delivery system for anticancer therapy, ACS Appl. Bio Mater., 2023, 7(1): 379–393. doi:10.1021/acsabm.3c00957
  • [15] Xu, Y., Shen, R., Tang, J., Zou, X., Wan, W., Guo, H., Optimizing mechanical properties and corrosion resistance in core-shell nanofiber epoxy self-healing coatings: Impact of shell material variation, Polym. Eng. Sci., 2024, 64(4): 1770–1785. doi:10.1002/pen.26655
  • [16] Fan, S., Shen, Z., Yin, J., Wang, Z., Pu, J., A high performance MBene substrate for improving the MnO2 cathodes for aqueous Zn-ion batteries, Chem. Commun., 2025, 61(9): 1838–1841. doi:10.1039/d4cc05835f
  • [17] Wang, Q., Jia, C., Li, Z., Pu, L., Qiu, Y., Yan, C., et al., Association analysis between the distribution of surface physical characteristics and bonding performance of carbon fiber composites, Polym. Compos., 2024, 45(10): 8797–8809. doi:10.1002/pc.28377
  • [18] Dimitriadi, M., Petropoulou, A., Vakou, D., Zinelis, S., Eliades, G., In vitro evaluation of a silane containing self-adhesive resin luting agent, Dent. Mater., 2023, 39(2): 181–191. doi:10.1016/j.dental.2022.12.007
  • [19] Yakisan, K.I., Turkel, V., Celik, E., Production, characterization and mechanical behaviors of electrolytic metal-coated light polymeric cylinders for photogravure press applications, Arab. J. Sci. Eng., 2024, 49(11): 15679–15699. doi:10.1007/s13369-024-09136-w
  • [20] Nie, C., Shi, Y., Jiang, S., Wang, H., Liu, M., Huang, R., et al., Constructing fireproof MXene-based cotton fabric/thermoplastic polyurethane hierarchical composites via encapsulation strategy, ACS Appl. Nano Mater., 2023, 5(9): 7229–7239. doi:10.1021/acsapm.3c01201
  • [21] Wang, G., Wang, M., Zheng, M., Ebo, B., Xu, C., Liu, Z., et al., Thermoplastic polyurethane/carbon nanotube composites for stretchable flexible pressure sensors, ACS Appl. Nano Mater., 2023, 6(11): 9865–9873. doi:10.1021/acsanm.3c01543
  • [22] Zhang, C., Zhang, Y., Gu, X., Ma, C., Wang, Y., Peng, J., et al., Radiation synthesis of MXene/Ag nanoparticle hybrids for efficient photothermal conversion of polyurethane films, Rsc Adv., 2023, 13(22): 15157–15164. doi:10.1039/d3ra02799f
  • [23] Ran, A., Liang, F., Yu, S., Gan, Y., Yang, W., Fan, B., et al., Synthesis of silicone-modified self-healing polyurethane coatings with MXene@fluorinated polyaniline for prolonged corrosion resistance, J. Coat. Technol. Res., 2024, 21(6): 2035–2046. doi:10.1007/s11998-024-00952-1
  • [24] He, J., Huang, C., Pu, M., Shu, Z., Duan, Z., Zeng, Z., et al., Preparation and performance study of SiO2 aerogel thermal insulation coating with nanoporous structure for wind turbine blade surface, J. Adhes. Sci. Technol., 2024, 38(13): 2425–2446. doi:10.1080/01694243.2024.2302262
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39280e19-07c8-409a-aafe-8e8f790fec78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.