PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Ceramic Injection Moulding and Pressure Infiltration to the Manufacturing of Alumina/AlSi10Mg Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ceramic injection moulding and gas pressure infiltration were employed for the manufacturing of alumina/AlSi10Mg composites. Porous ceramic preforms were prepared by mixing alumina powder with a multi-binder system and injection moulding of the powder polymer slurry. Then, the organic part was removed through a combination of solvent and thermal debinding, and the materials were finally sintered at different temperatures. The ceramic preforms manufactured in this way were infiltrated by an AlSi10Mg alloy. The microstructure and properties of the manufactured materials were examined using scanning electron microscopy, mercury porosimetry and bending strength testing. The results of transmission electron microscopy and scanning electron microscopy observations show that the fabricated composite materials are characterised by the percolation type of the microstructure and a lack of unfilled pores with good cohesion at the metal-ceramic interfaces. This is surprising considering that over 30% of the pores are smaller than 1 μm. The results show that the bending strength of the obtained composites decreased with increasing sintering temperature of the porous preforms.
Twórcy
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., 44-100, Gliwice, Poland
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., 44-100, Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., 44-100, Gliwice, Poland
Bibliografia
  • [1] K. U. Kainer, Metal Matrix Composites, Wiley-VCH, Weinheim (2006).
  • [2] J. W. Kaczmar, K. Pietrzak, W. Włosiński, J. Mater. Process. Tech. 106 (1-3) 58-67 (2000).
  • [3] K. Konopka, M. Szafran, J. Mater. Process. Tech. 175, 266-270 (2006).
  • [4] L. A. Dobrzański, M. Kremzer, K. Gołombek, Mater. Sci. Forum. 591, 188-192 (2008).
  • [5] A. Boczkowska, P. Chabera, A. J. Dolata, M. Dyzia, A. Oziębło, Metalurgija 52 (3), 345-348 (2013).
  • [6] C. Xiaozhou, W. Chao, X. Xiangxin, C. Gongjin, Arch. Metal. Mater. 60 (4), 2493-2497 (2015).
  • [7] M. Pawlyta, B. Tomiczek, M. Kujawa, L. A. Dobrzański, B. Bierska-Piech, Mater. Charact. 114, 9-17 (2016).
  • [8] B. Hausnerova, D. Bleyan, V. Kasparkova, V. Pata, Ceram. Int. 42 (1), 460-465 (2016).
  • [9] E. Medvedovski, M. Peltsman, Adv. Appl. Ceram. 111 (5-6), 333 (2012).
  • [10] K. Golombek, G. Matula, J. Mikula, Mater. Tehnol. 51 (1), 163-171 (2017)
  • [11] P. Thomas-Vielma, A. Cervera, B. Levenfeld, A. Várez, J. Eur. Ceram. Soc. 28 (4), 763-771 (2008).
  • [12] L. Poh, C. Della, S. Ying, C. Goh, Y. Li, Powder Technol. 328 (1), 256-263 (2018).
  • [13] G. Matula, J. Krzysteczko, J. Achiev. Mater. Manuf. Eng. 71 (1), 14-21 (2015).
  • [14] G. Matula, J. Krzysteczko, B. Lipowska, J. Achiev. Mater. Manuf. Eng. 67 (1), 32-38 (2014).
  • [15] N. A. Travitzky, J. Mater. Sci. 36, 4459-4463 (2001).
  • [16] S. N. Chou, J. L. Huang, D. F. Lii, H. H. Lu, J. Alloy. Compd. 436, 124-130 (2007).
  • [17] A. Kurzawa, J. W. Kaczmar, Arch. Foundry Eng. 17 (1), 103-108 (2017).
  • [18] J. Maj, M. Basista, W. Węglewski, K. Bochenek, A. Strojny-Nędza, K. Naplocha, T. Panzer, M. Tatarkova, F. Fiori, Mat. Sci. Eng. A-Struct. 715, 154-162 (2018).
Uwagi
EN
This publication was financed by the Ministry of Science and Higher Education of Poland as the statutory financial grant of the Faculty of Mechanical Engineering SUT.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39273558-b466-4008-8ace-4d6db3a5307d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.