PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microstructure formation and fatigue performance of duplex stainless steel 2205 welded joints by electric resistance welding

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electric resistance welding of thin-thickness duplex stainless steel (DSS) has an outstanding attraction in the plate-fin heat exchanger which is widely used in power machinery, diesel locomotive and other fields, but its structural integrity is threatened seriously by fatigue failure. Therefore, in this research, the formation of the heterogeneous microstructure of DSS electric resistance welding joints (ERWJ) was analyzed by the optical microscope (OM) and electron back-scattered diffraction (EBSD) observations, and the uniaxial tensile and fatigue tests were subsequently executed to disclose their mechanical properties. The intrinsic relevancy between phase-related characteristics and failure behavior was extensively analyzed. The results show that the ferrite was dominating at whole ERWJ, particularly at the energized area, accounting for up to 72%. More than 45% of high-angle boundaries (HABS) and the highest kernel average misorientation (KAM, 2.46° for austenite and 1.52° for ferrite), which indicates greater plastic deformation and residual stress, were observed at the weld edge. In addition, the failure occurred as a tear along the weld edge regardless of the monotonic and cyclic loadings under the deterioration of residual stress and island-like austenite. The distribution of fatigue life with cyclic amplitude performed an obvious turning point of 19.5 MPa due to the different failure mechanisms, providing a permissible range of the stress amplitudes and reinforcement strategies for the plate-shell heat exchanger ERWJ in the engineering.
Rocznik
Strony
art. no. e180, 2023
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
autor
  • State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
autor
  • CNOOC Petrochemical Engineering Co., Ltd., Jinan 250000, People’s Republic of China
autor
  • State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
autor
  • State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
Bibliografia
  • 1. Khorasani F, Jamaati R, Aval HJ. On the significance of inter- critical annealing time in governing mechanical properties of lean composition dual-phase steel. Arch Civil Mech Eng. 2023;23:105.
  • 2. Liu D, Hu JY, Yuan X, Zhou L, Zhong XK. Failure analysis and experimental verification on the hydrogen-driven pitting corrosion of heat exchanger tube material. Eng Fail Anal. 2022;137: 106283.
  • 3. Fargas G, Anglada M, Mateo A. Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel. J Mater Process Tech. 2009;209(4):1770–82.
  • 4. Luo J, Dong Y, Li L, Wang X. Microstructure of 2205 duplex stainless steel joint in submerged arc welding by post weld heat treatment. J Manuf Process. 2014;16(1):144–8.
  • 5. Ramkumar KD, Mishra D, Raj BG, Vignesh MK, Thiruvengatam G, Sudharshan SP, Arivazhagan N, Sivashanmugam N, Rabel AM. Effect of optimal weld parameters in the microstructure and mechanical properties of autogeneous gas tungsten arc weld- ments of super-duplex stainless steel UNS S32750. Mater Des. 2015;66:356–65.
  • 6. Sales AM, Westin EM, Jarvis BL. Effect of nitrogen in shielding gas of keyhole GTAW on properties of duplex and superduplex welds. Weld World. 2017;61(6):1133–40.
  • 7. Saravanan S, Sivagurumanikandan N, Raghukandan K. Effect of process parameters in microstructural and mechanical proper- ties of Nd: YAG laser welded super duplex stainless steel. Mater Today Proc. 2021;39(4):1248–53.
  • 8. Vignesh K, Elaya PA, Velmurugan P. Resistance spot welding of AISI-316L SS and 2205 DSS for predicting parametric influences on weld strength—experimental and FEM approach. Arch Civil Mech Eng. 2019;19:1029–42.
  • 9. Groth A, Schedin E, Sun CC, He HL, Guan L. Forta FDX 27– duplex stainless steel for high strength gasket plate heat exchang- ers. J Phys Conf Ser. 2017;896(1):012013.
  • 10. Xia ZL, Huang YC, Zhong JR, Guan KS. Cracking failure analysis on a high-frequency electric resistance welding pipe in buried fire water pipeline. Eng Fail Anal. 2023;146: 107072.
  • 11. Yu WW, Fan MY, Jia WQ, Xue F, Yu M, Liu H, Chen X. Thermal aging effect on the tensile and fatigue properties of the narrow-gap TIG welded joints in offshore floating nuclear power plants. Int J Fatigue. 2019;126:143–54.
  • 12. Xie XF, Li JW, Jiang WC, Dong ZL, Tu ST, Zhai XN, Zhao X. Nonhomogeneous microstructure formation and its role on tensile and fatigue performance of duplex stainless steel 2205 multi-pass welded joints. Mater Sci Eng A. 2020;786:139426.
  • 13. Giorjão RAR, Pereira VF, Terada M, Fonseca EBD, Marinho RR, Garcia DM, Tschiptschin AP. Microstructure and mechanical properties of friction stir welded 8 mm pipe SAF 2507 super duplex stainless steel. J Mater Res Technol. 2018;8:243–9.
  • 14. Esmailzadeh M, Shamanian M, Kermanpur A, Saeid T. Microstructure and mechanical properties of friction stir welded lean duplex stainless steel. Mater Sci Eng, A. 2013;561:486–91.
  • 15. Cui SW, Shi HY, Cui YX, Zhu T. The impact toughness of novel keyhole TIG welded duplex stainless steel joints. Eng Fail Anal. 2018;94:226–31.
  • 16. Pereira HB, Azevedo C. Can the drop evaporation test evaluate the stress corrosion cracking susceptibility of the welded joints of duplex and super duplex stainless steels. Eng Fail Anal. 2019;99:235–47.
  • 17. Wan Y, Jiang WC, Wei W, Xie XF, Song M, Xu GQ, Xie XL, Zhai XN. Characterization of inhomogeneous microstructure and mechanical property in an ultra-thick duplex stainless steel weld- ing joint. Mater Sci Eng A. 2021;822:141640.
  • 18. Arabi SH, Pouranvari M, Movahedi M. Welding metallurgy of duplex stainless steel during resistance spot welding. Weld J. 2017;96:307–18.
  • 19. Arabi SH, Pouranvari M, Movahedi M. Pathways to improve the austenite–ferrite phase balance during resistance spot welding of duplex stainless steels. Sci Technol Weld Join. 2018;24:8–15.
  • 20. Qi ZA, Lin YJ, Lin N, Yu N, Liu F, Fu CG, Ge BH, Miredin QC, Zhu TJ, Zhao XB. Enhancing the room temperature thermoelectric performance of n -type bismuth-telluride-based polycrystal- line materials by low-angle grain boundaries. Mater Today Phys. 2022;22:100573.
  • 21. Ma X, Zha M, Wang SQ, Yang Y, Jia HL, Gao D, Wang C, Wang HY. A rolled Mg8Al0.5Zn0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries. J Magnes Alloys. 2022;10(10):2889–900.
  • 22. Pandre S, Morchhale A, Kotkunde N, Suresh K, Singh SK. Stretch flanging behaviour and microstructural analysis of DP steel using punch stretching and incremental forming processes. Arch Civil Mech Eng. 2022;22(4):163.
  • 23. Xie XF, Dong ZL, Li SH, Wan Y. Experimental investigation and micromechanical modeling of load partitioning behavior of duplex stainless steel 2205 during cyclic hardening. Mater Today Commun. 2023;35:106202.
  • 24. Dong ZL, Xue-fang Xie XF, Jiang WC, Wan Y, Zhai XN, Zhao X. Microstructure-based multiscale and heterogeneous elasto-plastic properties of 2205 duplex stainless steel welded joints: experimental and modeling. Int J Plast. 2022;159:103474.
  • 25. Maurya AK, Pandey C, Chhibber R. Effect of filler metal composition on microstructural and mechanical characterization of dissimilar welded joint of nitronic steel and super duplex stainless steel. Arch Civil Mech Eng. 2022;22:90.
  • 26. Wang B, Christiansen TL, Somers MAJ. Influence of ferrite- austenite distribution in 2205 duplex stainless steel on high- temperature solution nitriding behaviour. Surf Coat Technol. 2023;453:129134.
  • 27. Eghlimi A, Shamanian M, Eskandarian M. Evaluation of microstructure and texture across the welded interface of super duplex stainless steel and high strength low alloy steel. Surf Coat Technol. 2015;264:150–62.
  • 28. Emami S, Saeid T. A comparative study on the microstruc- ture development of friction stir welded 304 austenitic, 430 ferritic, and 2205 duplex stainless steels. Mater Chem Phys. 2019;237(1):121833.
  • 29. Zheng Y, Sun HL, Yan LC, Pang XL, Gao KW. Effect of aging time on crack initiation mechanism of precipitation hardening stainless steel in very high cycle fatigue regime. Int J Fatigue. 2023;170:107522.
  • 30. Zhang L, Jin WH, Li N, Wu BL, Wan G, Zhang L, Duan GS, Esling C. Plastic strain accommodation and crack initiation in a randomly-oriented Mg–8Y–1Zr magnesium alloy during accumu- lated tensile deformation. Mater Sci Eng A. 2022;858:144165.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-392700c2-8fd3-46d3-ae10-3ce076b55fb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.