PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method for accuracy assessment of topo-bathymetric surface models based on geospatial data recorded by UAV and USV vehicles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geospatial data obtained using Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs) are increasingly used to model the terrain in the coastal zone, in particular in shallow waterbodies (with a depth of up to 1 m). In order to generate a terrain relief, it is important to choose a method for modelling that will allow it to be accurately projected. Therefore, the aim of this article is to present a method for accuracy assessment of topo-bathymetric surface models based on geospatial data recorded by UAV and USV vehicles. Bathymetric and photogrammetric measurements were carried out on the waterbody adjacent to the public beach in Gdynia (Poland) in 2022 using a DJI Phantom 4 RTK UAV and an AutoDron USV. The geospatial data integration process was performed in the Surfer software. As a result, Digital Terrain Models (DTMs) in the coastal zone were developed using the following terrain modelling methods: Inverse Distance to a Power (IDP), Inverse Distance Weighted (IDW), kriging, the Modified Shepard’s Method (MSM) and Natural Neighbour Interpolation (NNI). The conducted study does not clearly indicate any of the methods, as the selection of the method is also affected by the visualization of the generated model. However, having compared the accuracy measures of the charts and models obtained, it was concluded that for this type of data, the kriging (linear model) method was the best. Very good results were also obtained for the NNI method. The lowest value of the Root Mean Square Error (RMSE) (0.030 m) and the lowest value of the Mean Absolute Error (MAE) (0.011 m) were noted for the GRID model interpolated with the kriging (linear model) method. Moreover, the NNI and kriging (linear model) methods obtained the highest coefficient of determination value (0.999). The NNI method has the lowest value of the R68 measure (0.009 m), while the lowest value of the R95 measure (0.033 m) was noted for the kriging (linear model) method.
Rocznik
Strony
461--480
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wzory
Twórcy
  • Department of Geodesy and Oceanography, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  • Marine Technology Ltd., ul. Wiktora Roszczynialskiego 4-6, 81-521 Gdynia, Poland
Bibliografia
  • [1] Brivio, P. A., Colombo, R., Maggi, M., & Tomasoni, R. (2002). Integration of Remote Sensing Data and GIS for Accurate Mapping of Flooded Areas. International Journal of Remote Sensing, 23(3), 429-441. https://doi.org/10.1080/01431160010014729
  • [2] Brown, D. G., Riolo, R., Robinson, D.T., North, M., & Rand, W. (2005). Spatial Process and Data Models: Toward Integration of Agent-based Models and GIS. Journal of Geographical Systems, 7, 25-47. https://doi.org/10.1007/s10109-005-0148-5
  • [3] Popielarczyk, D., & Templin, T. (2014). Application of Integrated GNSS/Hydroacoustic Measurements and GIS Geodatabase Models for Bottom Analysis of Lake Hancza: The Deepest Inland Reservoir in Poland. Pure and Applied Geophysics, 171, 997-1011. https://doi.org/10.1007/s00024-013-0683-9
  • [4] Abdalla, R. (2016). Introduction to Geospatial Information and Communication Technology (GeoICT). Springer. https://doi.org/10.1007/978-3-319-33603-9
  • [5] Cao, W., & Wong, M. H. (2007). Current Status of Coastal Zone Issues and Management in China: A Review. Environmental International, 33(7), 985-992. https://doi.org/10.1016/j.envint.2007.04.009
  • [6] Cicin-Sain, B., & Knecht, R. W. (1998). Integrated Coastal and Ocean Management: Concepts and Practices. Island Press.
  • [7] Lewicka, O., Specht, M., Stateczny, A., Specht, C., Brčić, D., Jugović, A., Widźgowski, S., & Wiśniewska, M. (2021). Analysis of GNSS, Hydroacoustic and Optoelectronic Data Integration Methods Used in Hydrography. Sensors, 21(23), 7831. https://doi.org/10.3390/s21237831
  • [8] Specht, M., Specht, C., Mindykowski, J., Dąbrowski, P., Maśnicki, R., & Makar, A. (2020). Geospatial Modeling of the Tombolo Phenomenon in Sopot Using Integrated Geodetic and Hydrographic Measurement Methods. Remote Sensing, 12(4), 737. https://doi.org/10.3390/rs12040737
  • [9] Kang, M. (2014). Overview of the Applications of Hydroacoustic Methods in South Korea and Fish Abundance Estimation Methods. Fisheries and Aquatic Sciences, 17(3), 369-376.
  • [10] Makar, A. (2022). Determination of USV’s Direction Using Satellite and Fluxgate Compasses and GNSS-RTK. Sensors, 22(20), 7895. https://doi.org/10.3390/s22207895
  • [11] Makar, A. (2008). Method of Determination of Acoustic Wave Reflection Points in Geodesic Bathymetric Surveys. Annual of Navigation, 14, 1-89.
  • [12] Parente, C., & Vallario, A. (2019). Interpolation of Single Beam Echo Sounder Data for 3D Bathymetric Model. International Journal of Advanced Computer Science and Applications, 10(10), 6-13. https://dx.doi.org/10.14569/IJACSA.2019.0101002
  • [13] Specht, C., Specht, M., & Dabrowski, P. (2017). Comparative Analysis of Active Geodetic Networks in Poland. Proceedings of the 17th International Multidisciplinary Scientific GeoConference (SGEM 2017), Bulgaria. https://10.5593/sgem2017/22/S09.021
  • [14] Wlodarczyk-Sielicka, M., & Stateczny, A. (2016). Comparison of Selected Reduction Methods of Bathymetric Data Obtained by Multibeam Echosounder. Proceedings of the 2016 Baltic Geodetic Congress (BGC 2016), Poland. https://doi.org/10.1109/BGC.Geomatics.2016.22
  • [15] Kondo, H., & Ura, T. (2004). Navigation of an AUV for Investigation of Underwater Structures. Control Engineering Practice, 12(12), 1551-1559. https://doi.org/10.1016/j.conengprac.2003.12.005
  • [16] Noureldin, A., Karamat, T.B., & Georgy, J. (2013). Fundamentals of Inertial Navigation, Satellite-based Positioning and Their Integration. Springer. https://doi.org/10.1007/978-3-642-30466-8
  • [17] Specht, M. (2019). Method of Evaluating the Positioning System Capability for Complying with the Minimum Accuracy Requirements for the International Hydrographic Organization Orders. Sensors, 19(18), 3860. https://doi.org/10.3390/s19183860
  • [18] Stateczny, A. (2016). Radar Water Level Sensors for Full Implementation of the River Information Services of Border and Lower Section of the Oder in Poland. Proceedings of the 17th International Radar Symposium (IRS 2016), Poland. https://doi.org/10.1109/IRS.2016.7497386
  • [19] Wehr, A., & Lohr, U. (1999). Airborne Laser Scanning - An Introduction and Overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 68-82. https://doi.org/10.1016/S0924-2716(99)00011-8
  • [20] Williams, R., Brasington, J., Vericat, D., Hicks, M., Labrosse, F., & Neal, M. (2011). Chapter Twenty - Monitoring Braided River Change Using Terrestrial Laser Scanning and Optical Bathymetric Mapping. Developments in Earth Surface Processes, 15, 507-532. https://doi.org/10.1016/B978-0-444-53446-0.00020-3
  • [21] Dąbrowski, P.S., Specht, C., Specht, M., Burdziakowski, P., Makar, A., & Lewicka, O. (2021). Integration of Multi-source Geospatial Data from GNSS Receivers, Terrestrial Laser Scanners, and Unmanned Aerial Vehicles. Canadian Journal of Remote Sensing, 47(4), 621-634. https://doi.org/10.1080/07038992.2021.1922879
  • [22] Erena, M., Atenza, J. F., García-Galiano, S., Domínguez, J. A., & Bernabé, J. M. (2019). Use of Drones for the Topo-bathymetric Monitoring of the Reservoirs of the Segura River Basin. Water, 11(3), 445. https://doi.org/10.3390/w11030445
  • [23] Lubczonek, J., Kazimierski, W., Zaniewicz, G., & Lacka, M. (2022). Methodology for Combining Data Acquired by Unmanned Surface and Aerial Vehicles to Create Digital Bathymetric Models in Shallow and Ultra-shallow Waters. Remote Sensing, 14(1), 105. https://doi.org/10.3390/rs14010105
  • [24] Specht, C., Świtalski, E., & Specht, M. (2017). Application of an Autonomous/Unmanned Survey Vessel (ASV/USV) in Bathymetric Measurements. Polish Maritime Research, 24(3), 36-44. https://doi.org/10.1515/pomr-2017-0088
  • [25] Specht, M., Specht, C., Szafran, M., Makar, A., Dąbrowski, P., Lasota, H., & Cywiński, P. (2020). The Use of USV to Develop Navigational and Bathymetric Charts of Yacht Ports on the Example of National Sailing Centre in Gdańsk. Remote Sensing, 12(16), 2585. https://doi.org/10.3390/rs12162585
  • [26] Lewicka, O., Specht, M., & Specht, C. (2022). Assessment of the Steering Precision of a UAV along the Flight Profiles Using a GNSS RTK Receiver. Remote Sensing, 14(23), 6127. https://doi.org/10.3390/rs14236127
  • [27] Golden Software LLC. (2023, 28 April). Surfer®User’s Guide. https://downloads.goldensoftware.com/guides/Surfer20UserGuide.pdf
  • [28] Council of Ministers of the Republic of Poland (2012). Ordinance of the Council of Ministers of 15 October 2012 on the National Spatial Reference System. Council of Ministers of the Republic of Poland. (in Polish)
  • [29] Pham, H. (2019). A New Criterion for Model Selection. Mathematics, 7(12), 1215. https://doi.org/10.3390/math7121215
  • [30] Willmott, C. J., & Matsuura, K. (2005). Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Climate Research, 30(1), 79-82. http://dx.doi.org/10.3354/cr030079
  • [31] Di Bucchianico, A. (2008). Coefficient of Determination (𝑅2). In Ruggeri, F., Kenett, R. S., & Faltin, F. W. (Eds.). Encyclopedia of Statistics in Quality and Reliability. John Wiley & Sons, Inc. http://doi:10.1002/9780470061572
  • [32] Szot, T., Specht, C., Specht, M., & Dabrowski, P. S. (2019). Comparative Analysis of Positioning Accuracy of Samsung Galaxy Smartphones in Stationary Measurements. PLoS ONE, 14(4), e0215562. https://doi.org/10.1371/journal.pone.0215562
  • [33] Makar, A., Specht, C., Specht, M., Dąbrowski, P., Burdziakowski, P., & Lewicka, O. (2020). Seabed Topography Changes in the Sopot Pier Zone in 2010-2018 Influenced by Tombolo Phenomenon. Sensors, 20(21), 6061. https://doi.org/10.3390/s20216061
  • [34] Lu, G. Y., & Wong, D. W. (2008). An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Computers & Geosciences, 34(9), 1044-1055. https://doi.org/10.1016/j.cageo.2007.07.010
  • [35] Ohlert, P.L., Bach, M., & Breuer, L. (2022). Accuracy Assessment of Inverse Distance Weighting Interpolation of Groundwater Nitrate Concentrations in Bavaria (Germany). Environmental Science and Pollution Research, 30, 9445-9455. https://doi.org/10.1007%2Fs11356-022-22670-0
  • [36] Bartier, P. M., & Keller, C. P. (1996). Multivariate Interpolation to Incorporate Thematic Surface Data Using Inverse Distance Weighting (IDW). Computers & Geosciences, 22(7), 795-799. http://dx.doi.org/10.1016/0098-3004(96)00021-0
  • [37] Davis, J. C. (2002). Statistics and Data Analysis in Geology. John Wiley & Sons, Inc.
  • [38] Basso, K., De Avila Zingano, P. R., & Dal Sasso Freitas, C. M. Interpolation of Scattered Data: Investigating Alternatives for the Modified Shepard Method. Proceedings of the XII Brazilian Symposium on Computer Graphics and Image Processing, Brazil. https://doi.org/10.1109/SIBGRA.1999.805606
  • [39] Malvić, T., Ivšinović, J., Velić, J., Sremac, J., & Barudžija, U. (2020). Application of the Modified Shepard’s Method (MSM): A Case Study with the Interpolation of Neogene Reservoir Variables in Northern Croatia. Stats, 3(1), 68-83. https://doi.org/10.3390/stats3010007
  • [40] Renka, R. J. (1988). Multivariate Interpolation of Large Sets of Scattered Data. ACM Transactions on Mathematical Software, 14(2), 139-148. https://doi.org/10.1145/45054.45055
  • [41] Cueto, E., Sukumar, N., Calvo, B., Martínez, M.A., Cegoñino, J., & Doblaré, M. (2003). Overview and Recent Advances in Natural Neighbour Galerkin Methods. Archives of Computational Methods in Engineering, 10, 307-384. https://doi.org/10.1007/BF02736253
  • [42] Sibson, R. (1981). A Brief Description of Natural Neighbor Interpolation. In Barnett, V. (Ed.). Interpreting Multivariate Data (pp. 21-36). John Wiley & Sons, Inc.
  • [43] Fanchi, J. R. (2018). Chapter 2 - Geological Modeling. In Fanchi, J. R. (Ed.). Principles of Applied Reservoir Simulation (pp. 9-33). Gulf Professional Publishing.
  • [44] Journel, A. G., & Huijbregts, Ch. J. (1978). Mining Geostatistics. Cambridge.
  • [45] Rodzinska, O., Perovych, I., Perovych, L., & Ludchak, O. GIS Technologies for Integrating Cartographic Materials into a Single Coordinate System. Proceedings of the 18th International Conference on Geoinformatics - Theoretical and Applied Aspects, Ukraine. https://doi.org/10.3997/2214-4609.201902042
  • [46] Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. d. J., & Enciso, J. (2021). Digital Terrain Models Generated with Low-cost UAV Photogrammetry: Methodology and Accuracy. ISPRS International Journal of Geo-Information, 10(1), 285. https://doi.org/10.3390/ijgi10050285
  • [47] Nikolakopoulos, K.G., Lampropoulou, P., Fakiris, E., Sardelianos, D., & Papatheodorou, G. (2018). Synergistic Use of UAV and USV Data and Petrographic Analyses for the Investigation of Beachrock Formations: A Case Study from Syros Island, Aegean Sea, Greece. Minerals, 8(11), 534. https://doi.org/10.3390/min8110534
  • [48] Anderson, T. W., & Darling, D. A. (1954). A Test of Goodness of Fit. Journal of the American Statistical Association, 49(268), 765-769.
  • [49] Kolmogorov, A. (1933). Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale dell’Istituto Italiano degli Attuari, 4(1), 83-91. (in Italian)
  • [50] Pearson, K. (1900). On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to Have Arisen from Random Sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157-175. https://doi.org/10.1080/14786440009463897
  • [51] Smirnov, N. (1948). Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19(2), 279-281. https://doi.org/10.1214/aoms/1177730256
  • [52] Specht, M. (2021). Consistency Analysis of Global Positioning System Position Errors with Typical Statistical Distributions. Journal of Navigation, 74(6), 1201-1218. https://doi.org/10.1017/S0373463321000485
  • [53] Specht, M. (2021). Consistency of the Empirical Distributions of Navigation Positioning System Errors with Theoretical Distributions - Comparative Analysis of the DGPS and EGNOS Systems in the Years 2006 and 2014. Sensors, 21(1), 31. https://doi.org/10.3390/s21010031
  • [54] Specht, M. (2021). Determination of Navigation System Positioning Accuracy Using the Reliability Method Based on Real Measurements. Remote Sensing, 13(21), 4424. https://doi.org/10.3390/rs13214424
  • [55] Specht, M. (2022). Experimental Studies on the Relationship Between HDOP and Position Error in the GPS System. Metrology and Measurement Systems, 29(1), 17-36. http://dx.doi.org/10.24425/mms.2022.138549
  • [56] Lubczonek, J., Wlodarczyk-Sielicka, M., Lacka, M., & Zaniewicz, G. (2021). Methodology for Developing a Combined Bathymetric and Topographic Surface Model Using Interpolation and Geodata Reduction Techniques. Remote Sensing, 13(21), 4427. https://doi.org/10.3390/rs13214427
  • [57] Genchi, S. A., Vitale, A. J., Perillo, G. M. E., Seitz, C., & Delrieux, C. A. (2020). Mapping Topobathymetry in a Shallow Tidal Environment Using Low-cost Technology. Remote Sensing, 12(9), 1394. https://doi.org/10.3390/rs12091394
  • [58] Gesch, D., & Wilson, R. (2001). Development of a Seamless Multisource Topographic/Bathymetric Elevation Model of Tampa Bay. Marine Technology Society Journal, 35(4), 58-64. https://doi.org/10.4031/002533201788058062
  • [59] Stateczny, A. (2000). The Neural Method of Sea Bottom Shape Modelling for the Spatial Maritime Information System. In Brebbia, C.A., & Olivella, J. (Eds.). Maritime Engineering and Ports II (pp. 251-259). WIT Press. https://doi.org/10.2495/PORTS000221
Uwagi
1. This research was funded by the National Centre for Research and Development in Poland, grant number LIDER/10/0030/L-11/19/NCBR/2020. Moreover, this research was funded from the statutory activities of Gdynia Maritime University, grant number WN/PI/2023/03.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-391b6952-9003-4d38-9289-922b42fdc2e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.