PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural failure criteria for S235JR steel subjected to spatial stress states

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study deals with failure criteria for S235JR steel subjected to spatial stress states. The predictions were made using the modified Gurson–Tvergaard–Needleman (GTN) material model, which takes into account the effect of microstructural damage. The relationship between the material strength parameters and the microstructural changes caused by plastic deformation was established by analyzing the void volume fraction. The microstructural failure criteria determined for S235JR steel refer to the moment of decrease in strength and rupture.
Rocznik
Strony
195--205
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • [1] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I – yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology, Transactions of the ASME 99 (1) (1977) 2–15.
  • [2] V. Tvergaard, Influence of voids on shear band instabilities under plane strain condition, International Journal of Fracture 17 (4) (1981) 389–407.
  • [3] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica 32 (1) (1984) 157–169.
  • [4] K. Nahshon, J.W. Hutchinson, Modification of the Gurson model for shear failure, European Journal of Mechanics – A/ Solids 27 (1) (2008) 1–17.
  • [5] EN 1993-1-10: 2005 Eurocode 3: Design of steel structures – Part 1–10: Material toughness and through-thickness properties.
  • [6] G. Sedlacek, M. Feldmann, B. Kühn, D. Tschickardt, S. Höhler, C. Müller, W. Hensen, N. Stranghöner, W. Dahl, P. Langenberg, S. Münstermann, J. Brozetti, J. Raoul, R. Pope, F. Bijlaard, Commentary and worked examples to EN 1993-1-10 ‘‘Material toughness and through thickness properties’’ and other toughness oriented rules in EN 1993, JRC Scientific and Technical Reports, European Commission Joint Research Centre, Luxembourg, 2008.
  • [7] P.G. Kossakowski, An analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure, Archives of Civil and Mechanical Engineering 10 (2) (2010) 15–39.
  • [8] P.G. Kossakowski, Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales, Journal of Theoretical and Applied Mechanics 50 (2) (2012) 589–607.
  • [9] P.G. Kossakowski, Prediction of ductile fracture for S235JR steel using the stress modified critical strain and Gurson– Tvergaard–Needleman models, Journal of Materials in Civil Engineering 24 (12) (2012) 1492–1500.
  • [10] P.G. Kossakowski, Effect of initial porosity on material response under multi-axial stress state for S235JR steel, Archives of Civil Engineering 58 (4) (2012) 445–462.
  • [11] P.G. Kossakowski, Influence of initial porosity on strength properties of S235JR steel at low stress triaxiality, Archives of Civil Engineering 58 (3) (2012) 293–308.
  • [12] P.G. Kossakowski, The analysis of influence of Tvergaard's parameters on S235JR steel response in high stress triaxiality, Advances in Material Science 12 (1) (2012) 27–35.
  • [13] P.G. Kossakowski, W. Trąmpczyński, Microvoids evolution in S235JR steel subjected to multi-axial stress state, Engineering Transactions 60 (4) (2012) 287–314.
  • [14] J. Faleskog, X. Gao, C.F. Shih, Cell model for nonlinear fracture analysis – I. Micromechanics calibration, International Journal of Fracture 89 (4) (1998) 355–373.
  • [15] PN-EN 10002-1:2004 Metallic materials – Tensile testing – Part 1: Method of test at ambient temperature.
  • [16] Abaqus 6.10. Analysis User's Manual, Dassault Systèmes Simulia Corp., Providence, 2010.
  • [17] P.W. Bridgman, Studies in large plastic flow and fracture, McGraw-Hill, New York, 1952.
  • [18] X. Gao, J. Faleskog, C.F. Shih, Cell model for nonlinear fracture analysis – II. Fracture-process calibration and verification, International Journal of Fracture 89 (4) (1998) 375–398.
  • [19] L. Xia, C.F. Shih, Ductile crack growth – I. A numerical study using computational cells with microstructurally-based length scales, Journal of the Mechanics and Physics of Solids 43 (2) (1995) 233–259.
  • [20] L. Xia, C.F. Shih, Ductile crack growth – II. Void nucleation and geometry effects on macroscopic fracture behavior, Journal of the Mechanics and Physics of Solids 43 (12) (1995) 1953–1981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39198365-0ce0-42d2-b0ac-4466c6d59914
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.