PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lithological discrimination and mineralogical mapping using ASTER remote sensing data in the east-central Jebilet region, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study evaluates the effectiveness of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite data for lithological discrimination and mineralogical mapping in the east-central Jebilet region, Morocco. ASTER data offer considerable potential for detecting spectral signatures of mineral zones and determining their composition. The main objective is to apply image processing techniques, such as band ratios (BR), principal component analysis (PCA) and minimum noise fraction (MNF), in order to identify and map characteristic minerals in the region. The application of various band ratios effectively mapped the distribution of key minerals and alteration zones in the study area. The band ratio (band7/band5) was used to identify kaolinite, while the ratio (band4+band6)/band5 highlighted the presence of a mineral group constisting of alunite, kaolinite and pyrophyllite. The ratio (band7+band9)/ band8 revealed a set of a carbonate mineral, chlorite and epidote, whereas endoskarns composed of epidote, chlorite and amphibole were mapped using the ratio (band6+band9)/(band7+band8). The ratio (band5+band7)/band6 characterised phyllic alteration by detecting phyllosilicate minerals such as sericite, muscovite or illite. Phengite was mapped using the band5/band6 ratio. The distribution of these minerals was closely linked to the lithological variability of previously mapped geological units, highlighting the relevance and effectiveness of band ratios for geological mapping using remote sensing. The PCA and MNF components with the highest eigenvalues significantly improved lithological discrimination by reducing noise and refining the delineation of mineral zones. The results obtained have enabled the creation of a detailed map of mineral distribution, highlighting the alteration zones and lithological formations in the eastern Jebilet region of Morocco.time-consuming, yet inexpensive method that can be applied to other areas, especially those that are difficult to reach.
Czasopismo
Rocznik
Strony
167--177
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
  • Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
  • Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
  • Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
  • Department of Geology, Faculty of Sciences, Ibno Zohr University, Agadir, Morocco
  • Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
  • Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
autor
  • Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
autor
  • Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
autor
  • Department of Geology, Faculty of Sciences, Ibno Zohr University, Agadir, Morocco
Bibliografia
  • Abdelouhed F., Algouti A., Algouti A., Mohammed I. & Mourabit Z., 2021. Contribution of GIS and remote sensing in geological mapping, lineament extractions and hydrothermal alteration minerals mapping using ASTER satellite images: case study of central Jebilets-Morocco. Disaster Advances 14, 15–25.
  • Abrams M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing 21, 847–859.
  • Admou S., Branquet Y., Badra L., Barbanson L., Outhounjite M., Khalifa A., Zouhair M. & Maacha L., 2018. The hajjar regional transpressive shear zone (Guemassa massif, Morocco): consequences on the deformation of the base-metal massive sulfide ore. Minerals 8, 435.
  • Amer R., Kusky T. & El Mezayen A., 2012. Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research 49, 121–134.
  • Baid S., Tabit A., Algouti A., Algouti A., Nafouri I., Souddi S., Aboulfaraj A., Ezzahzi S. & Elghouat A., 2023. Lithological discrimination and mineralogical mapping using Landsat-8 OLI and ASTER remote sensing data: Igoudrane region, jbel saghro, Anti Atlas, Morocco. Heliyon 9.
  • Boardman J.W., 1993. Automating spectral unmixing of AVIRIS data using convex geometry concepts. Sum maries of the 4th Annual JPL Airborne Geoscience Workshop. Vol. 1, JPL Publication 93–26, pp. 11–14.
  • Bouloton J., Gasquet D. & Pin C., 2019. Petrogenesis of the Early-Triassic quartz-monzodiorite dykes from Central Jebilet (Moroccan Meseta): Trace element and Nd-Sr isotope constraints on magma sources, and inferences on their geodynamic context. Journal of African Earth Sciences 149, 451–464.
  • Brimhall G.H., Dilles J.H. & Proffett J.M., 2005. The role of geologic mapping in mineral exploration. [In:] M.D. Doggett & J.R. Parry (Eds): Wealth creation in the minerals industry: Integrating science, business, and education. Spec. Publ. 12, pp. 221–241.
  • Chen W., Li X., Qin X. & Wang L., 2024. Geological Remote Sensing: An overview BT – Remote sensing intelligent interpretation for geology: From perspective of geological exploration. [In:] W. Chen, X. Li, X. Qin & L. Wang (Eds): Remote sensing intelligent interpretation for geology: From perspective of geological exploration, pp. 1–14, Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8997-3_1
  • Green A.A., Berman M., Switzer P. & Craig M.D., 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing 26, 65–74.
  • Guanter L., Kaufmann H., Segl K., Foerster S., Rogass C., Chabrillat S., Kuester T., Hollstein A., Rossner G. & Chlebek C., 2015. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sensing 7, 8830–8857.
  • Hewson R.D., Cudahy T.J., Mizuhiko S., Ueda K. & Mauger A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment 99, 159–172.
  • Hung L.Q., Batelaan O. & De Smedt F., 2005. Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, 5983, 182–193.
  • Huvelin P., 1977. Etude geologique et gitologique du massif hercynien des Jebilet (Maroc occidental). Notes et Mémoires du Service Géologique du Maroc, 232 bis, 308 pp.
  • Laurent D.L.H., 2019. Identification des sites de minéralisation par l’imagerie satellite dans le Hoggar, région d’Issalane (Tazrouk, Algérie). Université Abou Bekr Belkaid – Tlemcen, 108 pp.
  • Mahdevar M., Ketabi P., Saadatkhah N. & Rahnamarad J., 2014. Application of ASTER SWIR data on detection of alteration zone in the Sheikhabad area, eastern Iran. Arabian Journal of Geosciences 8. https://doi.org/10.1007/s12517-014-1597-2
  • Michard A., 1976. Eléments de géologie marocaine. Notes and Memoirs of the Geological Survey of Morocco, 252, 408 pp.
  • Ouhoussa L., Ghafiri A., Aissi L. Ben & Es-Sabbar B., 2023. Integrating aster images processing and fieldwork for identification of hydrothermal alteration zones at the oumjrane-boukerzia district, Moroccan Anti-Atlas. Open Journal of Geology 13, 171–188.
  • Salehi S., Mielke C., Brogaard Pedersen C. & Dalsenni Olsen S., 2019. Comparison of ASTER and Sentinel-2 spaceborne datasets for geological mapping: a case study from North-East Greenland. Geological Survey of Denmark and Greenland Bulletin 43, 1–6. https://doi.org/10.34194/geusb.v43.4305
  • Testa F.J., Villanueva C., Cooke D.R. & Zhang L., 2018. Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER imagery. Remote Sensing 10, 203.
  • Yamaguchi Y. & Naito C., 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing 24, 4311–4323.
  • Zhang T., Yi G., Li H., Wang Z., Tang J., Zhong K., Li Y., Wang Q. & Bie X., 2016. Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in Duolong porphyry Cu-Au deposit, Tibetan Plateau, China. Remote Sensing 8, 890.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3915fccc-cd6d-4aaa-bc8f-7d9f9412bf6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.