PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of edge fairing shaping effects on aerodynamic response of long-span bridge deck by unsteady RANS

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Triangular edge fairings are widely used and attached to the edges of rectangular box girder bridge decks to improve their aerodynamic responses. Bridge deck with edge fairing should be shaped efficiently to obtain optimum aerodynamic responses. In this paper, the shaping effect of a triangular edge fairing on aerodynamic behaviour of a bridge deck is presented. A wide range of top and bottom plate slopes is utilized to change the shape of the fairing. The unsteady RANS simulation with the k–ω-SST turbulence model is used to simulate the flow. The flow is discretized by the finite volume method with second-order accuracy in space and time. The mean and rms values of the force coefficients are evaluated and the after-body velocity fluctuations are plotted. The aerodynamic responses are tried to explain by means of pressure and velocity distributions around the bridge deck. A relative comparison of the aerodynamic responses of perforated and solid handrails is also presented. It is found that a lower aerodynamic response can be obtained by properly shaping the triangular edge fairing.
Rocznik
Strony
888--900
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
  • Department of Civil Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong 4349, Bangladesh
autor
  • Department of Civil Engineering, Yokohama National University, 79-1, Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan
autor
  • Department of Civil Engineering, Yokohama National University, 79-1, Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan
autor
  • Department of Civil Engineering, Yokohama National University, 79-1, Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan
Bibliografia
  • [1] K. Yamaguchi, T. Takeuchi, S. Suzuki, M. Miyazaki, T. Kitahara, K. Kazama, Effects of venting and fairing on vortex-induced oscillations and flutter of box bridge deck, in: Proc. of 9th National Symposium on Wind Engineering, 1986.
  • [2] F. Nagao, H. Utsunomiya, T. Oryu, S. Manabe, Aerodynamics efficiency of triangular fairing on box girder bridge, Journal of Wind Engineering and Industrial Aerodynamics 49 (1993) 565–574.
  • [3] M. De Miranda, G. Bartoli, Aerodynamic optimization of decks of cable-stayed bridges, in: Cable-Supported Bridges – Challenging Technical Limits, Proc. of IABSE Conf., 2001.
  • [4] N.F. Sukamta, M. Noda, K. Muneta, Aerodynamic Stabilizing Mechanism of a Cable Stayed Bridge with Two Edge Box Girder, in: Proc. of 6th Int. Colloquium on Bluff Body Aerodynamics and Applications, 2008.
  • [5] Q. Wang, H. Liao, M. Li, R. Xian, Wind tunnel study on aerodynamic optimization of suspension bridge deck based on flutter stability, in: Proc. of 7th Asia-Pacific Conference on Wind Engineering, 2009.
  • [6] Q. Wang, H. Liao, M. Li, C. Ma, Influence of aerodynamic configuration of a streamlined box girder on bridge flutter and vortex-induced vibration, Journal of Modern Transportation 17 (4) (2011) 261–267.
  • [7] A. Larsen, A. Wall, Shaping of bridge box girder to avoid vortex shedding response, Journal of Wind Engineering and Industrial Aerodynamics 104–106 (2012) 159–165.
  • [8] L. Bruno, G. Mancini, Importance of deck details in bridge aerodynamics, Structural Engineering International 12 (4) (2002) 289–294.
  • [9] S. Watanabe, K. Fumoto, Aerodynamic study of a slotted box girder using computational fluid dynamics, Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 1885–1894.
  • [10] M.W. Sarwar, T. Ishihara, K. Shimada, Y. Yamasaki, T. Ikeda, Prediction of aerodynamic characteristics of a box girder bridge section using the LES turbulence model, Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 1895–1911.
  • [11] M.W. Sarwar, T. Ishihara, Numerical study on suppression of vortex-induced vibrations of a box girder bridge section by aerodynamic countermeasures, Journal of Wind Engineering and Industrial Aerodynamics 98 (2010) 701–711.
  • [12] L. Huang, H. Liao, Identifications of flutter derivatives of bridge deck under multi-frequency vibration, Engineering Applications of Computational Fluid Mechanics 5 (1) (2011) 16–25.
  • [13] F. Nieto, L. Kusano, S. Hernandez, J.A. Jurado, CFD analysis of the vortex-shedding response of twin-box deck cable-stayed bridge, in: Proc. of 5th International Symposium on Computational Wind Engineering, 2010.
  • [14] C. Mannini, A. Soda, V. Ralph, G. Schewe, Unsteady RANS simulation of flow around a bridge section, Journal of Wind Engineering and Industrial Aerodynamics 98 (2010) 742–753.
  • [15] S. Shirai, T. Ueda, Aerodynamic simulation by CFD of flat box girder of super-long span suspension bridge, in: Proc. of fifth Asia-Pacific Conference on Wind Engineering, 2001.
  • [16] A. Sarkic, R. Fisch, R. Hoffer, K. Bletzinger, Bridge flutter derivatives based on computed, validated pressure fields, Journal of Wind Engineering and Industrial Aerodynamics 104–106 (2012) 141–151.
  • [17] F. Brusiani, S. De Miranda, L. Patruno, F. Ubertini, P. Vaona, On the evaluation of bridge deck flutter derivatives using RANS turbulence model, Journal of Wind Engineering and Industrial Aerodynamics 119 (2013) 39–47.
  • [18] M.N. Haque, H. Katsuchi, H. Yamada, M. Nishio, Investigation of bridge deck shaping effects on aerodynamic response by RANS, in: Proc. of 6th Int. Symposium on Computational Wind Engineering, 2014.
  • [19] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering application, AIAA Journal 32 (8) (1994) 1589–1605.
  • [20] F.R. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, in: Proc. of Turbulence, Heat and Mass Transfer, vol. 4, 2003.
  • [21] J. Franke, A. Hellsten, H. Schlunzen, B. Carissimo, Best Practice Guidelines for the CFD Simulation of Flows in the Urban Environment, COST Office, Brussels, 2007, ISBN: 3-00- 018312-4.
  • [22] Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, T. Shirasawa, AIJ guidelines for practical application of CFD to pedestrian wind environment around buildings, Journal of Wind Engineering and Industrial Aerodynamics 96 (10–11) (2008) 1749–1761.
  • [23] D. Yu, A. Kareem, Numerical simulation of flow around rectangular prism, Journal of Wind Engineering and Industrial Aerodynamics 67–68 (1997) 195–208.
  • [24] A. Shohankar, L. Davidson, C. Norberg, Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition, International Journal of Numerical Methods in Fluids 26 (1998) 39–56.
  • [25] M.N. Haque, H. Katsuchi, H. Yamada, M. Nishio, Investigation of flow fields around rectangular cylinder under turbulent flow by LES, Engineering Applications of Computational Fluid Mechanics 8 (3) (2014) 396–406.
  • [26] M.N. Haque, H. Katsuchi, H. Yamada, M. Nishio, Flow field analysis of a pentagonal-shaped bridge deck by unsteady RANS, Engineering Application of Computational Fluid Mechanics 10 (1) (2015) 1–16.
  • [27] C. Mannini, A. Soda, G. Schewe, Unsteady RANS modelling of flow past a rectangular cylinder: investigation of Reynolds number effects, Computers and Fluids 39 (2010) 1609–1624.
  • [28] M. Casey, T. Wintergerste, Best Practice Guidelines, ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD, ERCOFTAC, Brussels, 2000.
  • [29] T. Tamura, K. Nozawa, K. Kondo, AIJ guide for numerical prediction of wind loads on buildings, Journal of Wind Engineering and Industrial Aerodynamics 96 (10–11) (2008) 1974–1984.
  • [30] P.J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque, New Mexico, 1998.
  • [31] T. Tamura, Y. Ito, Aerodynamic characteristics and flow structures around a rectangular cylinder with a section of various depth/breadth ratios, Journal of Structural and Construction Engineering (Transactions of Architectural Institute of Japan) 486 (1996) 153–162.
  • [32] K. Shimada, T. Ishihara, Application of a modified k–e model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders, Journal of Fluid Structure 16 (2002) 465–485.
  • [33] G. Schewe, Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1:5, in: C. Borri, G. Augusti, G. Bartoli, L. Facchini (Eds.), Proc. of 5th European and African Conference on Wind Engineering, 2009.
  • [34] A. Okajima, Strouhal numbers of rectangular cylinders, Journal Fluid Mechanics 123 (1982) 37–398.
  • [35] F. Galli, Comportamento aerodinamico di strutture snelle non profilate: approccio sperimentale e computazionale, (Master's thesis), Politecnico di Torino, Turin, Italy, 2005.
  • [36] F. Ricciardelli, A.M. Marra, Sectional aerodynamic forces and longitudinal correlation on a vibrating 5:1 rectangular cylinder, in: Proc. of 6th International Colloquium on Bluff Body Aerodynamics and Applications, 2008.
  • [37] W.L. Oberkampf, T.G. Trucano, Verification and validation in computational fluid dynamics, Progresses in Aerospace Sciences 38 (2002) 209–272.
  • [38] L. Bruno, D. Fransos, N. Coste, A. Bosco, 3D flow around a rectangular cylinder: a computational study, Journal of Wind Engineering and Industrial Aerodynamics 98 (2010) 63–76.
  • [39] Y. Nakamura, Y. Ohya, The effects of turbulence on the mean flow past two-dimensional rectangular cylinders, Journal Fluid Mechanics 149 (1984) 255–273.
  • [40] D. Pullin, A. Perry, Some flow visualization experiments on the starting of vortex, Journal of Fluid Mechanics 97 (2) (1980) 239–255.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-390e0529-4f23-4dfd-81fd-5222a7037dd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.