PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The ways to increase efficiency of soil bioremediation

Identyfikatory
Warianty tytułu
PL
Sposoby zwiększenia efektywności bioremediacji gleb
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to present possibilities of using different substrates to assist the bioremediation of soils contaminated with heavy metals, pesticides and other substances. Today's bioengineering offers many solutions that enable the effective conduct of biological remediation, including both biostimulation and bioaugmentation. For this purpose, they are used to enrich various organic substances, sorbents, microbiological and enzymatic preparations, chemical substances of natural origin or nanoparticles. The use of genetic engineering as a tool to obtain microorganisms and plants capable of efficient degradation of pollutants may cause the risks that entails the introduction of transgenic plants and microorganisms into the environment. In order to determine the efficacy and possible effects of the various bioremediation techniques, it is required to conduct many studies and projects on a larger scale than only in the laboratory. Furthermore, it should be emphasized that bioremediation involves interdisciplinary issues and therefore, there is a need to combine knowledge from different disciplines, such as: microbiology, biochemistry, ecology, environmental engineering and process engineering.
Rocznik
Strony
155--174
Opis fizyczny
Bibliogr. 100 poz., rys.
Twórcy
autor
  • Division of Sanitary Biology and Biotechnology, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland
autor
  • Division of Sanitary Biology and Biotechnology, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland
autor
  • Division of Sanitary Biology and Biotechnology, Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland
Bibliografia
  • [1] Alcade M, Ferrer M, Plou FJ, Ballesteros A. Environmental biocatalysis: from remediation with enzymes to novel green processes. Trend Biotechnol. 2006;24:281-287. DOI: 10.1016/j.tibtech.2006.04.002.
  • [2] Ayotamuno JM, Kogbara RB, Agoro OS. Biostimulation supplemented with phytoremediation in the reclamation of a petroleum contaminated soil. World J Microb Biot. 2009;25:1567-1572. DOI: 10.1007/s11274-009-0045-z.
  • [3] Nath A, Chakraborty S, Bhattacharjee C. 20 - bioreactor and enzymatic reactions in bioremediation. In: Das S, editor. Microbial Biodegradation and Bioremediation. Elsevier Inc. 2014, 455-495. DOI: 10.1016/B978-0-12-800021-2.00020-0.
  • [4] Rayu S, Karpozaus DG, Singh BK. Emerging technologies in bioremediation: constraints and opportunities. Biodegradation. 2012;23:917-926. DOI: 10.1007/s10532-012-9576-3.
  • [5] Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotech Adv. 2015;33:745-755. DOI: 10.1016/j.biotechadv.2015.05.003.
  • [6] Singh A, Kuhad RC, Ward OP. Biological remediation of soil: an overview of global market and available technologies. In: Singh A, Kuhad RC, Ward OP. editors. Advances in Applied Bioremediation. Berlin. Heidelberg: Springer; 2009;17:1-20. DOI: 10.1007/978-3-540-89621-0_1.
  • [7] Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotech Res Inter. 2011;1-13. ID 941810. DOI: 10.4061/2011/941810.
  • [8] Desai C, Pathak H, Madamwar D. Advances in molecular and “-omics” technologies to gauge microbial communities and bio remediation at xenobiotic/anthropogen contaminated sites. Biores Technol. 2009;101(6):1558-156. DOI: 10.1016/j.biortech.2009.10.080.
  • [9] Kang JW. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett. 2014;36:1129-1139. DOI: 10.1021/es203753b.
  • [10] Simarro R, González N, Bautista LF, Molina MC. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: Change in bacterial community. J. Hazard Mater. 2013;262:158-167. DOI: 10.1016/j.jhazmat.2013.08.025
  • [11] Hammond-Kosack KE. Biotechnology: Plant Protection. In: Smithers G, editor. Reference Module in Food Science. Elsevier Inc. 2014. DOI: 10.1016/B978-0-444-52512-3.00248-5.
  • [12] Mani D. Kumar C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol. 2014;11:843-872. DOI: 10.1007/s13762-013-0299-8.
  • [13] Kalantary RR, Mohseni-Bandpi A, Esrafili A, Nasseri S, Ashmagh FR, Jorfi S, et al. Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. J Environ Health Sci Eng. 2014;12(1):143. DOI: 10.1186/s40201-014-0143-1.
  • [14] Wołejko E, Butarewicz A, Wydro U, Łoboda T. Advantages and potential risks of municipal sewage sludge application to urban soil. Desalin Water Treat. 2014;52:3732-3742. DOI: 10.1080/19443994.2014.884714.
  • [15] Jovančićević B, Antić M, Pavlović I, Vrvić M, Beškoski V, Kronimus A, et al. Transformation of petroleum saturated hydrocarbons during soil bioremediation experiments. Water Air Soil Pollut. 2008;190:299-307. DOI: 10.1007/s11270-007-9601-z.
  • [16] Juwarkar AA, Singh SK, Mudhoo A. A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol. 2010;9:215-288. DOI: 10.1007/s11157-010-9215-6.
  • [17] Olkowska E, Ruman M, Kowalska A, Polkowska Ż. Determination of surfactants in environmental samples. Part I. Cationic compounds. Ecol Chem Eng S. 2013;20(1):69-77. DOI: 10.2478/eces-2013-0005.
  • [18] Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng. 2014;2(1): 239-259. DOI: 10.1016/j.jece.2013.12.019.
  • [19] Lors C, Damidot D, Ponge JF, Périé F. Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut. 2012;165:11-17. DOI: 10.1016/j.envpol.2012.02.004.
  • [20] Piekutin J, Skoczko I, Wysocki R. Zastosowanie koagulacji do usuwania związków ropopochodnych po napowietrzaniu. (Application of coagulation process for removal of petroleum hydrocarbons after aeration). Roczn Ochr Środ. 2015;17:1715-1726.
  • [21] Piekutin J, Skoczko I. Use of stripping tower and reverse osmosis in removal of petroleum hydrocarbons from water. Desalin Water Treat. 2014;52(19-21):3714-3718. DOI: 10.1080/19443994.2014.887497.
  • [22] Mukherjee K, Saha R, Ghosh A, Ghosh SK, Maji PK, Saha B. Surfactant-assisted bioremediation of hexavalent chromium by use of an aqueus extract of sugarcane bagasse. Res Chem Intermed. 2014;40:1727-1734. DOI: 10.1007/s11164-013-1077-4.
  • [23] Sejakova Z, Dercova K, Tothova L. Biodegradation and ecotoxicity of soil contaminated by pentachlorophenol applying bioaugmentation and addition of sorbents. World J Microbiol Biotechnol. 2009;25:243-252. DOI: 10.1007/s11274-008-9885-1.
  • [24] Semenyuk NN, Yatsenko VS, Strijakova ER, Filonov AE, Petrikov KV, Zavgorodnyaya YA, et al. Effect of activated charcoal on bioremediation of diesel fuel contaminated soil. Microbiology. 2014;83(5):589-598. DOI: 10.1134/S0026261714050221.
  • [25] Wołejko E, Wydro U, Butarewicz A, Łoboda T. Effects of sewage sludge on the accumulation of heavy metals in soil and in mixtures of lawn grasses. Environ Prot Eng. 2013;39(2):67-76. DOI: 10.5277/EPE130207.
  • [26] Achiba WB, Gabteni N, Lakhdar A, Laing GD, Verloo M, Jedidi N, et al. Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agric Ecosyst Environ. 2009;130(3-4):156-163. DOI: 10.1016/j.agee.2009.01.001.
  • [27] Kabala C, Singh BR. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual. 2001;30:485-492. DOI: 10.2134/jeq2001.302485x.
  • [28] Singh RP, Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 2008;28:347-358. DOI: 10.1016/j.wasman.2006.12.010.
  • [29] Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 2013;90(4):1317-1332. DOI: 10.1016/j.chemosphere.2012.09.045.
  • [30] Gestel KV, Mergaert J, Swings J, Coosemans J, Ryckeboer J. Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut. 2003;125:361-68. DOI: 10.1016/S0269-7491(03)00109-X.
  • [31] Coates JD, Chakraborty R, Mcinerney MJ. Anaerobic benzene biodegradation - a new era. Res Microbiol. 2002;153:621-628. DOI: 10.1016/S0923-2508(02)01378-5.
  • [32] Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J. Biodegradation ofhexahydro1, 3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol. 2002;68:5336-5341. http://aem.asm.org/content/68/11/5336.full.
  • [33] Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol. 2007;76(4):741-752. DOI: 10.1007/s00253-007-1066-x.
  • [34] Mencía M, Martínez-Ferri AI, Alcalde M, De Lorenzo V. Identification of a γ-hexachlorocyclohexane dehydrochlorinase (LinA) variant with improved expression and solubility properties. Biocatal Biotransfor. 2006;24(3):223-230. DOI: 10.1080/10242420600667809.
  • [35] Passatore L, Rossetti S, Juwarkar AA, Massacci A. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. J Hazard Mater. 2014;278:189-202. DOI: 10.1016/j.jhazmat.2014.05.051.
  • [36] Rubilar O, Tortilla G, Cea M, Acevedo F, Bustamante M, Gianfreda L, et al. Bioremediation of a Chilean Andisol contaminated with pentachlotophenol (PCP) by solid substrate cultures of white-rot fungi. Biodegradation. 2011;22:31-41. DOI: 10.1007/s10532-010-9373-9.
  • [37] Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, et al. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem. 2013;60:182-194. DOI: 10.1016/j.soilbio.2013.01.012.
  • [38] Zaidi A, Wani PA, Khan MS. Bioremediation: A natural method for the management of polluted environment. In: Toxicity of Heavy Metals to Legumes and Bioremediation. Zaidi A, Wani PA, Khan MS, editors. Berlin Heidelberg: Springer; 2012;101-114.
  • [39] Susarlas, M, Edina VF, McCutcheon SC. Phytoremediation: An ecological solution to organic chemical contamination. Ecol Eng. 2002;18:647-658. DOI: 10.1016/s0925-8574(02)00026-5.
  • [40] Mallavarapu M, Balasubramanian R, Kadiyala V, Nambrattil S, Ravi N. Bioremediation approaches for organic pollutants: A critical perspective. Environ Int. 2011;37(8):1362-1375. DOI: 10.1016/j.envint.2011.06.003.
  • [41] Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, et al. The enzymatic basis for pesticide bioremediation. Indian J Microbiol. 2008;48:65-79. DOI: 10.1007/s12088-008-0007-4.
  • [42] Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK. OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes. 2009;2:67. DOI: 10.1186/1756-0500-2-67.
  • [43] Arora PK, Srivastava A, Singh VP. Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegrad. 2010;1:1-8. DOI: 10.4172/2155-6199.1000112.
  • [44] Sing H, Löffler FE, Fathepure BZ. Aerobic biodegradation of vinyl chloride by a highly enriched mixed culture. Biodegradation. 2004;15(3):197-204. DOI: 10.1023/B:BIOD.0000026539.55941.73.
  • [45] Gossett JM. Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environ Sci Technol. 2010;44(4):1405-1411. DOI: 10.1021/es9033974.
  • [46] Jones JP, O’Hare EJ, Wong LL. Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450cam). Eur J Biochem. 2001;268(5):1460-1467. DOI: 10.1046/j.1432-1327.2001.02018.x.
  • [47] Riffaldi R, Levi-Minzi R, Cardelli R, Palumbo S, Saviozzi A. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut. 2006;170(1-4):3-15. DOI: 10.1007/s11270-006-6328-1.
  • [48] Chandra R, Chowdhary P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci.: Processes Impacts. 2015;17:326-342. DOI: 10.1039/C4EM00627E.
  • [49] Kim JS, Park JW, Lee SE, Kim JE. Formation of bound residues of 8-hydroxybentazon by oxidoreductive catalysts in soil. J Agric Food Chem. 2002;50(12):3507-3511. DOI: 10.1021/jf011504z.
  • [50] Sharma D, Sharma B, Shukla AK. Biotechnological approach of microbial lipase: a review. Biotechnology. 2011;10: 23-40. DOI: 10.3923/biotech.2011.23.40.
  • [51] Marchut-Mikolajczyk O, Kwapisz E, Wieczorek D, Antczak T. Biodegradation of diesel oil hydrocarbons enhanced with Mucor circinelloides enzyme preparation. Int Biodeter Biodegr. 2015;104:142-148. DOI: 10.1016/j.ibiod.2015.05.008.
  • [52] Rao MA, Scelza R, Scotti R, Gianfreda L. Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr. 2010;10(3):333-353. DOI: 10.4067/S0718-95162010000100008.
  • [53] Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol. 2003;69(6):3085-3092. DOI: 10.1128/AEM.69.6.3085-3092.2003.
  • [54] Ashby MN, Rine J, Mongodin EF, Nelson KE, Dimster-Denk D. Serial analysis of rRNA genes and the unexpected dominance of rare members of microbial communities. Appl Environ Microbiol. 2007;73(14):4532-4542. DOI: 10.1128/AEM.02956-06.
  • [55] Saavedra JM, Acevedo F, González M, Seeger M. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil. Appl Microbiol Biotechnol. 2010;87:1543-1554. DOI 10.1007/s00253-010-2575-6.
  • [56] Zhang R, Xu X, Chen W, Huang Q. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol. 2015. DOI 10.1007/s00253-015-7099-7.
  • [57] van der Lelie D, Lesaulnier C, McCorkle S, Geets J, Taghavi S, Dunn J. Use of single-point genome signature tags as a universal tagging method for microbial genome surveys. Appl Environ Microbiol. 2006;72(3):2092-2101. DOI: 10.1128/AEM.72.3.2092-2101.2006.
  • [58] Mello-Farias PC, Chaves ALS. Biochemical and molecular aspects of toxic metals phytoremediation using transgenic plants. In: Transgenic Approach in Plant Biochemistry and Physiology. Tiznado-Hernandez ME, Troncoso-Rojas R, Rivera-Dominguez MA, editors. Research Signpost, Kerala, India 2008; 253-266.
  • [59] Sriprang R, Murooka Y. Accumulation and detoxification of metals by plants and microbes. In: Environmental Bioremediation Technologies. Singh SN, Tripathi RD, editors. Berlin Heidelberg: Springer; 2007:77-100. http://link.springer.com/book/10.1007%2F978-3-540-34793-4.
  • [60] Gupta DK, Huang HG, Corpas FJ. Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res Int. 2013;20(4):2150-2161. DOI: 10.1007/s11356-013-1485-4.
  • [61] Vallee BL, Auld DS. Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry. 1990;29(24):5647-5659. DOI: 10.1021/bi00476a001.
  • [62] Mejárea M, Bülow L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 2001;19(2):67-73. DOI: 10.1016/S0167-7799(00)01534-1.
  • [63] Cai Y, Ma QL. Metal tolerance, accumulation, and detoxicification in plants with emphasis on arsenic in terrestrial plants. In: Biogeochemistry of environmentally important trace elements. Cai Y, Braids OC. editors. Washington, DC: American Chemical Society; 2003;8:95-114. DOI: 10.1021/bk-2003-0835.ch008.
  • [64] Yang X, Jin XF, Feng Y, Islam E. Molecular mechanisms and genetic bases of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol. 2005;47(9):1025-1035. DOI: 10.1111/j.1744-7909.2005.00144.x.
  • [65] Hossain MA, Piyatida P, da Silva TJA, Fujita M. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Botany. 2012:1-40. DOI: 10.1155/2012/872875.
  • [66] Zenk MH. Heavy metal detoxification in higher plants - a review. Gene. 1996;179(1):21-30. DOI: 10.1016/S0378-1119(96)00422-2.
  • [67] Xiang C, Oliver DJ. Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell. 1998;10:1539-1550. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC144077/pdf/101539.pdf.
  • [68] Cherian GM, Chan HM. Biological functions of metallothioneins - a review. In: Metallothionein III: Biological Roles and Medical Implications. Suzuki KT, Kimura M, Imura N, editors. Boston: Birkhauser Verlag; 1993:87-109.
  • [69] Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO. Plant metallothioneins - metal chelators with ROS scavenging activity. Plant Biol. 2011;13(2):225-232. DOI: 10.1111/j.1438-8677.2010.00398.x.
  • [70] Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S. High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere. 2007;67(6):1117-1126. DOI: 10.1016/j.chemosphere.2006.11.039.
  • [71] Wood TK. Molecular approaches in bioremediation. Curr Opin Biotechnol. 2008;19(6):572-578. DOI: 10.1016/j.copbio.2008.10.003.
  • [72] Heaton ACP, Rugh CL, Wang NJ, Meagher RB. Physiological responses of transgenic merA-tobacco (Nicotiana tabacum) to foliar and root mercury exposure. Water Air Soil Pollut. 2005;161:137-155. DOI: 10.1007/s11270-005-7111-4.
  • [73] Bode M, Stobe P, Thiede B, Schuphan I, Schmidt B. Biotransformation of atrazine in transgenic tobacco cell culture expressing human P450. Pest Manage Sci. 2004;60:49-58. DOI: 10.1002/ps.770.
  • [74] Neufeld JD, Mohn WW, de Lorenzo V. Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray. Environ Microbiol. 2006;8(1):126-140. DOI: 10.1111/j.1462-2920.2005.00875.x.
  • [75] Fan G, Cang L, Qin W, Zhou C. Gomes HI, Zhou D. Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol. 2013;114:64-72. DOI: 10.1016/j.seppur.2013.04.030.
  • [76] Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Mol Biomol Spectrosc. 2007;67:1003-1006. DOI: 10.1016/j.saa.2006.09.028.
  • [77] Shin KH, Cha DK. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere. 2008;72(2):257-262. DOI: 10.1016/j.chemosphere.2008.01.043.
  • [78] Shan GB, Xing JM, Zhang HY, Liu HZ. Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol. 2005;71:4497-4502. DOI: 10.1128/AEM.71.8.4497-4502.2005.
  • [79] Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes; a review. Colloid Surf B: 2014;121:474-483. DOI: 10.1016/j.colsurfb.2014.05.027.
  • [80] Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol. 2007;41(14):5137-5142. DOI: 10.1021/es062929a.
  • [81] Beattie IR, Haverkamp RG. Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics. 2011;3:628-632. DOI: 10.1039/c1mt00044f.
  • [82] Zhang YX, Zheng J, Gao G, Kong YF, Zhi X, Wang K, et al. Biosynthesis of gold nanoparticles using chloroplasts. Int J Nanomed. 2011;6:2899-2906. DOI: 10.2147/IJN.S24785.
  • [83] Liu R, Zhao D. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res. 2007;41(12):2491-2502. DOI: 10.1016/j.watres.2007.03.026.
  • [84] Cameotra SS, Dhanjal S. Environmental nanotechnology: nanoparticles for bioremediation of toxic pollutants. Bioremed Technol. 2010;348-374. DOI: 10.1007/978-90-481-3678-0_13.
  • [85] Baek KH, Yoon BD, Cho DH, Kim BH, Oh HM, Kim HS. Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil contaminated soil. J Microbiol Biotechnol. 2009;19:339-345. DOI: 10.4014/jmb.0807.423.
  • [86] Jerez CA. Biomining microorganisms: molecular aspects and applications in biotechnology and bioremediation. In: Advances in Applied Bioremediation. Berlin: Springer; 2009:239-256. DOI: 10.1007/978-3-540-89621-0_13.
  • [87] Paliwal V, Chande S, Purohit H. Integrated perspective for effective bioremediation. Appl Biochem Biotechnol. 2012:166:903-924. DOI 10.1007/s12010-011-9479-5.
  • [88] Peijnenburg WJGM, Zablotskaja M, Vijver MG. Monitoring metals in terrestrial environments within a bioavailability framework and focus on soil extraction. Ecotoxicol Environ Safety. 2007;67(2):163-179. DOI: 10.1016/j.ecoenv.2007.02.008.
  • [89] Quevauviller P, editor. Methodologies for Soil and Sediment Fractionation Studies. Brussels, Belgium: Royal Society of Chemistry; 2002. DOI: 10.1039/9781847551412.
  • [90] Seleznev AA, Yarmoshenko IV. Study of urban puddle sediments for understanding heavy metal pollution in an urban environment. Environ Technol Innov. 2014;1-2:1-7. DOI: 10.1016/j.eti.2014.08.001.
  • [91] Mishra V, Lal R, Srinivasan S. Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol. 2001;27:133-166. DOI: 10.1080/20014091096729.
  • [92] Sar P, Kazy SK, Singh SP. Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol. 2001;32(4):257-261. DOI: 10.1046/j.1472-765X.2001.00878.x.
  • [93] Gupta VVSR, Dick RP, Coleman DC. Functional microbial ecology: Molecular approaches to microbial ecology and microbial habitats. Soil Biol Biochem. 2008;40:1269-1271. DOI: 10.1016/S0038-0717(08)00044-8.
  • [94] Naranjo L, Urbinaa H, De Sistoa A, Leona V. Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil. Biocatal Biotransform. 2007;25:341-349. DOI: 10.1080/10242420701379908.
  • [95] Nielsen MN, Winding A. Microorganisms as indicators of soil heath. NERI Technical Report No. 388, Ministry of the Environment. National Environmental Research Institute. Denmark 2002. http://www.dmu.dk/1_viden/2_publikationer/3_fagrapporter/rapporter/FR388.pdf.
  • [96] Steliga T, Jakubowicz P, Kapusta P. Optimisation research of petroleum hydrocarbons biodegradation in weathered drilling wastes from waste pits. Waste Manage Res. 2010;28(12):1065-1075. DOI: 10.1177/0734242X09351906.
  • [97] Juvonen R, Martikainen E, Schultz E, Joutti A, Ahtiainen J, Lehtokaris M. A battery of toxicity tests as indicators of decont amination in composting oily waste. Ecotoxicol Environ Saf. 2000;47:156-166.
  • [98] Steliga T, Jakubowicz P, Kapusta P. Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons. Biores Technol. 2012;125:1-10. DOI: 10.1016/j.biortech.2012.08.092.
  • [99] Xu L, Teng Y, Li ZG, Norton JM, Luo YM. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculums. Sci Total Environ. 2010;408:1007-1013. DOI: 10.1016/j.scitotenv.2009.11.031.
  • [100] Teng Y, Luo Y, Sun X, Tu C, Xu L, Liu W, et al. Influence of arbuscular mycorrhiza and rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Int J Phytoremed. 2010;12:516-533. DOI: 10.1080/15226510903353120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-390be867-aa94-4064-9e61-c09dbdf0876f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.