PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated determination of chest characteristics of Indonesians as the basis of chest dosimetrical phantom design

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this study was to develop software to automatically measure the main areas of the chest, i.e. soft tissue, bone, and air and to implement it in Kraton Regional General Hospital for designing a specific dosimetrical phantom for chest digital radiography (DR) examination. Methods: This study was a retrospective study on all DR images from 2015 to 2019, and computed tomography (CT) images of 102 patients in Digital Imaging and Communications in Medicine (DICOM) format files scanned from January-December 2019 at the Kraton Regional General Hospital. We evaluated the number of basic DR chest examinations compared to all DR radiological examinations. We developed a MatLab graphical user interface (GUI) for automated measurement of the areas of the main chest components (soft tissue, bone, and air). We computed the areas of the main components of the chest in order to develop a specific chest phantom for DR in the hospital. In order to compute the areas of the main components, we used chest CT images of patients with clinical indications of chest tumors. Results: The basic DR chest examination comprised 59.5% of all DR examinations in the hospital during 2015-2019. The average areas of soft tissue, bone, and air within the chest in all patients were 331, 20, and 125 cm2, respectively, with values of 345, 23, and 139 cm2 for males, and 309, 15, and 103 cm2 for females. The areas were also dependent on age with values of 121, 10, 55 cm2 for patients aged 5-11 years, 371, 27, and 88 cm2 for patients aged 12-25 years, 322, 22, and 131 cm2 for patients aged 26-45 years, and 334, 19, and 126 cm2 for patients > 45 years old. Conclusion: A GUI for computing the main composition of the chest was successfully developed. The areas of chest male patients were greater than female patients. The areas of soft tissue, bone, and air were dependent on the patient's age. Therefore, the design of dosimetrical DR phantom must consider the gender and age of the patient.
Rocznik
Strony
263--268
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Kraton Regional General Hospital, Jl. Veteran 31, Pekalongan, Central Java, Indonesia
  • Department of Applied Physics and Medical Imaging, California State University Channel Islands, Camarillo, CA 93012, USA
Bibliografia
  • 1. Gonzalez AJ. Current status on the global levels of radiation exposure. Proceedings of the International Conference on the Sources, Effects and Risks of Ionizing Radiation. 2014;16-54.
  • 2. Hiswara E, Kartikasari D. Dosis pasien pada pemeriksaan rutin sinar-x radiologi diagnostik. Indonesian Journal of Nuclear Science and Technology. 2015;16:71-84.
  • 3. Salat D, Nikodemova D. Patient doses and image quality in digital chest radiology. Radiat Prot Dosimetry. 2008;129:147-149.
  • 4. Paydar R, Takavar A, Kardan MR, Babakhani A, Deevband MR, Saber S. Patient effective dose evaluation for chest X-ray examination in three digital radiography centers. Iran J Radiat Res. 2012;10:139‐143.
  • 5. International Commission on Radiation Units and Measurements. Image quality in chest radiography. ICRU Report 70. 2003.
  • 6. Moey SF, Fatin Naimah MA. Evaluation of the influence of exposure index on image quality and radiation dose. Iran J Med Phys 2019;16:294-299
  • 7. Adhikari SR. Effect and application of ionization radiation (X-ray) in living organism. Kaski. The Himalaya Physics. 2012;3:89-92.
  • 8. Rana BS, Kumar S, Sandhu IS, Singh NP. Dosimetry of adult and pediatric patients for common digital radiography examinations. Radiat Prot Dosimetry. 2018;179:349-357.
  • 9. Sandborg M, Tingberg A, Ullman G, Dance DR, Alm Carlsson G. Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages. Med Phys. 2006;33:4169-4175.
  • 10. Komite Akreditasi Rumah Sakit. Standar nasional akreditasi rumah sakit edisi 1. 2017.
  • 11. Martin CJ. Radiation dosimetry for diagnostic medical exposures. Radiat Prot Dosimetry. 2008;128:389–412.
  • 12. International Commission on Radiation Units and Measurements. Phantoms and computational models in therapy, diagnosis and protection. ICRU Publication 48 (Oxford: Pergamon Press). 1992.
  • 13. American Association of Physicists in Medicine. Standardized methods for measuring diagnostic X-ray exposures. AAPM Report No 31. 1990.
  • 14. American National Standard Institute. Method for the sensitometry of medical X-ray screen-film-processing systems. American National Standard Institute (PH2/43). New York. 1982.
  • 15. Conway BJ, Butler PF, Duff JE, et al. Beam quality independent attenuation phantom for estimating patient exposure from X-ray automatic exposure controlled chest examinations. Med Phys. 1984;11:827–832.
  • 16. Pina DR, Duarte SB, Ghilardi Netto T, Morceli J. Phantom development for radiographic image optimization of chest, skull and pelvis examination for nonstandard patient. Appl Radiat Isot. 2009;67(1):61–69.
  • 17. Gray JE. Quality control in diagnostic imaging: A quality control cookbook. Baltimor Md: University Park Press.1983.
  • 18. Conway BJ, Duff JE, Fewell TR, Jennings RJ, Rothenberg LN, Fleischman RC. A patient-equivalent attenuation phantom for estimating patient exposures from automatic exposure controlled X-ray examinations of the abdomen and lumbosacral spine. Med Phys. 1990;17(3):448–453.
  • 19. Conway BJ, Suleiman OH, Rueter FG, Mccrohan JL. Patient equivalent attenuation phantoms. Radiat Prot Dosimetry.1992;43(1-4):123–125.
  • 20. International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection: Reference values. ICRP Publication 89 (Oxford: Pergamon press). 2003.
  • 21. Alves AFF, Miranda JRA, Bacchim Neto FA, Duarte SB, Pina DR. Construction of pediatric homogeneous phantoms for optimization of chest and skull radiographs. Eur J Radiol. 2015;84(8):1579-1585.
  • 22. Chotas HG, Floyd CE Jr, Johnson GA, Ravin CE. Quality control phantom for digital chest radiography. Radiology. 1997;202(1):111-116.
  • 23. Jones AK, Simon TA, Bolch WE, Holman MM, Hintenlang DE. Tomographic physical phantom of the newborn child with real-time dosimetry I. Methods and techniques for construction. Med Phys. 2006;33:3274-3282.
  • 24. Kim JI, Choi H, Lee BI, et al. Physical phantom of typical Korean male for radiation protection purpose. Radiat Prot Dosimetry. 2006;118:131–136.
  • 25. Pina DR, Duarte SB, Morceli J, Ghilardi Netto T. Development of phantom for radiographic image optimization of standard patient in the lateral view of chest and skull examination. Appl Radiat Isot. 2006;64:1623–1630.
  • 26. Rasuli B, Mahmoud-Pashazadeh A, Ghorbani M, Juybari RT, Naserpour M. Patient dose measurement in common medical X-ray examinations in Iran. J Appl Clin Med Phys. 2016;17(1): 374-386.
  • 27. Winslow JF, Hyer DE, Fisher RF, Tien CJ, Hintenlang DE. Construction of anthropomorphic phantoms for use in dosimetry studies. J Appl Clin Med Phys. 2009;10(3):195-204.
  • 28. Jones AK, Hintenlang D, Bolch WE. Tissue equivalent materials for construction of tomographic dosimetry phantoms in pediatric radiology. Med Phys. 2003;30:2072–2081.
  • 29. Fahmi A, Anam C, Suryono, Ali MH, Jauhari A. Correlation between age and head diameters in the paediatric patients during CT examination of the head. Pol J Med Phys Eng. 2019;25(4):229-235
  • 30. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. Automated calculation of water equivalent diameter (DW) based on AAPM task group 220. J Appl Clin Med Phys. 2016;17(4):320-333.
  • 31. Lin CS, Chan PC, Huang KH, Lu CF, Chen YF, Chen YOL. Guidelines for reducing image retakes of general digital radiography. Advances in Mechanical Engineering. 2016;8(4):1–6.
  • 32. Qin C, Yao D, Shi Y, Song Z. Computer‑aided detection in chest radiography based on artificial intelligence: a survey. BioMed Eng OnLine. 2018;17:113.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39080adb-295c-4baa-a488-220f45521ca9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.