PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D Body Scan as Anthropometric Tool for Individualized Prosthetic Socks

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Every year, approximately 3,000 people in Sweden undergo amputation of a body part. The use of a prosthesis can greatly improve the quality of life for these people. To improve the fit and comfort of a prosthesis, a sock is used as an interface between the prosthesis socket and the stump. A three-dimensional (3D) body scanner can be used to take measurements that are used to produce individualized socks that improve fit and comfort. The standardized method for taking measurements with a 3D body scanner often requires a standing position and hence a new scanning method is needed to improve the accessibility for 3D body scanning. This study aimed to create a scanning scenario and an algorithm for scanning amputation stumps for individualizing prosthesis socks for upper-body amputations. Vitronic VITUSSMART LC 3D Body Scanner was used in this study. The results show a seated position with arms slightly away from the body, scanned at 45° as the best. To measure the right upper arm and the left armpit, the best was to scan at a 315° angle. Paired t-tests showed no significant differences compared with the 3D body scanner of traditional manual measurements. The proposed method exhibited good relative reliability and potential to facilitate the customization of prosthetic socks for amputees.
Rocznik
Strony
350--357
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • The Swedish School of Textiles, University of Borås Allégatan 1, 50190 Borås, Sweden
  • The Swedish School of Textiles, University of Borås Allégatan 1, 50190 Borås, Sweden
autor
  • The Swedish School of Textiles, University of Borås Allégatan 1, 50190 Borås, Sweden
  • The Swedish School of Textiles, University of Borås Allégatan 1, 50190 Borås, Sweden
Bibliografia
  • [1] Sandsjö, L., Guo, L. (2018). Scan-to-knit-A platform for personalised smart textiles research and development with a special focus on prosthetics. In ISEK 2018-The XXII Congress of the International Society of Electrophysiology and Kinesiology, 222–223.
  • [2] Carroll, K., Edelstein, J. (2006). Prosthetics and patient management: A comprehensive clinical approach (1st ed.). Slack, Thorofare, NJ.
  • [3] Geil, M. D. (2005). Consistency and accuracy of measurement of lower-limb amputee anthropometrics. The Journal of Rehabilitation and Development 42(2), 131–140. doi: 10.1682/JRRD.2004.05.0054.
  • [4] Sims, R. E., Marshall, R., Gyi, D. E., Summerskill, S. J., Case, K. (2012). Collection of anthropometry from older and physically impaired persons: Traditional methods versus TC 2 3D body scanner. International Journal of Industrial Ergonomics, 42(1), 65–72. doi: 10.1016/j.ergon.2011.10.002.
  • [5] SS-EN ISO 7250-1:2017. Basic human body measurements for technological design—Part 1: Body measurement definitions and landmarks.
  • [6] Troynikov, O., Ashayeri, E. (2011). 3D body scanning method for close-fitting garments in sport and medical applications. HFESA 47th Annual Conference 2011, 11–16, doi: 10.15221/11.239.
  • [7] Dessery, Y., Pallari, J. (2018). Measurements agreement between low-cost and high-level handheld 3D scanners to scan the knee for designing a 3D printed knee brace. PLoS One, 13(1), e0190585. doi: 10.1371/journal.pone.0190585.
  • [8] Seminati, E., Canepa Talamas, D., Youong, M., Twiste, M., Dhokia, V., et al. (2017). Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees’ residual limb models. PLoS One 12(9), e0184498. doi: 10.1371/journal.pone.0184498.
  • [9] Bragança, S., Arezes, P., Carvalho, M., Ashdown, S. P., Xu, B., Castellucci, I., et al. (2017). Validation study of a Kinect based body imaging system. Work, 57(1), 9–21.
  • [10] Kuehnapfel, A., Ahnert, P., Loeffler, M., Broda, A., Scholz, M. (2016). Reliability of 3D laser-based anthropometry and comparison with classical anthropometry. Scientific Reports (Nature Publisher Group). 6(5), 1–11. doi: 10.1038/srep26672.
  • [11] Xia, S., Guo, S., Li, J., Istook, C. (2018). Comparison of different body measurement techniques: 3D stationary scanner, 3D handheld scanner, and tape measurement. The Journal of the Textile Institute. 110(6), 1–11. doi: 10.1080/00405000.2018.1541437.
  • [12] Tomkinson, G. R., Shaw, L. G. (2013). Quantification of the postural and technical errors in asymptomatic adults using direct 3D whole body scan measurements of standing posture. Gait & Posture, 37(2), 172–177. doi: 10.1016/j.gaitpost.2012.06.031.
  • [13] SS-EN ISO 20685-1:2018. Ergonomics—3D scanning methodologies for internationally compatible anthropometric databases – Part 1: Evaluation protocol for body dimensions extracted from 3D body scans.
  • [14] SS-EN ISO 20685-2:2018. Ergonomics—3D scanning methodologies for internationally compatible anthropometric databases – Part 2: Evaluation Protocol of surface shape and repeatability of relative landmark positions.
  • [15] Elbrecht, P., Palm, K. J. (2014). Precision of 3D body scanners. IEEE 18th International Conference on Intelligent Engineering Systems INES 2014, Tihany, 2014, 127–132. doi: 10.1109/INES.2014.6909355.
  • [16] Seca (2019). Seca 201 Ergonomic circumference measuring tape. Retrieved May 20, 2019. Website: https://www.seca.com/fileadmin/documents/product_sheet/seca_pst_201_en_int.pdf.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39078c08-4faa-4859-b9a4-4d4effc3f5f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.