PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Tuning the Laser Ignition Properties of Nitrocellulose-Nitroglycerine-Hexogen Propellants via Incorporation of Carbon Nanotubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Near infrared laser ignition is challenging owing to the poor near infrared laser absorption of nitrocellulose-nitroglycerine-hexogen (NC-NG-RDX) propellants. Less than 1 wt.% of carbon nanotubes (CNTs) were uniformly dispersed into the NC-NG-RDX propellants to tune its near infrared laser ignition property. The effects of CNTs on the thermal decomposition, near infrared light absorption and thermal conductivity of NC-NG-RDX propellants were studied. The near infrared laser ignition property of NC-NG-RDX propellants doped with CNTs were investigated compared with raw NC-NG-RDX propellant. The decomposition property and thermal conductivity of NC-NG-RDX propellants doped with CNTs were little changed due to the small quantity of CNTs. The laser reflectivity of the composite propellants decreased obviously as the content of CNTs was increased because of the high laser absorption property of CNTs. The laser ignition performance of the composites propellants is substantially improved by the incorporation of 0.5 wt.% or less CNTs and the successful ignition time decreases remarkably. Higher CNT content, such as 0.75 wt.% can lead to failure of laser ignition due to the excessive laser absorption efficiency and heating rate of the radiated region of the composite propellants together with inefficient deflagration. Our research reveals that the appropriate proportion of CNTs can potentially be used as a laser sensitizer for realizing effective infrared laser ignition of NC-NG-RDX propellants.
Rocznik
Strony
385--404
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • College of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • College of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • College of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • College of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Bibliografia
  • [1] Liau, Y.C.; Kim, E.S.; Yang, V.A Comprehensive Analysis of Laser-induced Ignition of RDX Monopropellant. Combust. Flame 2001, 126(3):1680-1698.
  • [2] Saito, T.; Shimoda, M.; Yamaya, T.; Iwama, A. Ignition of AP-based Composite Solid Propellants Containing Nitramines Exposed to CO2 Laser Radiation at sub Atmospheric Pressures. Combust. Flame 1991, 85(1-2): 68-76.
  • [3] Ilyushin, M.A.; Tselinskii, I.V. The Influence of the Structure of the Salts of Azoles upon the Processes of Their Thermal and Laser Initiation. Cent. Eur. J. Energ. Mater. 2006, 3(1-2): 39-50.
  • [4] Nakayama, H.; Miyashita, T.; Hashino, S.; Yoshitake, N.; Orita, R. An Approximate Theory of Laser-induced Ignition of Boron/Potassium Nitrate Pyrotechnic. Sci. Technol. Energ. Mater. 2010, 71(1): 31-38.
  • [5] Sumpter, D.R. Laser-Initiated Ordnance for Air-to-Air Missiles. Proc. 29th Joint Propulsion Conference and Exhibit, Monterey, US, 1993, AIAA-93-2360, 137-147.
  • [6] Barrows, A.W.; Forch, B.E.; Chang, L.M.; Howard, S.L.; Beyer, R.A. Laser Ignition Testing of Two-Piece Tank Ammunition for Advanced Tank Cannon System (ATACS). AD-A283628, ARL-TR-474, 1994.
  • [7] Khaneft, A.V.; Duginov, E.V. Effect of Melting on the Critical Ignition Energy of Condensed Explosives by a Short Laser Pulse. Combust., Explos. Shock Waves 2012, 48(6): 699-704.
  • [8] Lavid, M.; Gulati, S.K.; Lempert, W.R. Laser Ignition of Ball Powder (Nitrocellulose base). Proc. SPIE 1994, 2122: 129-143.
  • [9] O’Briant, S.A.; Gupta, S.B.; Vasu, S.S. Review: Laser Ignition for Aerospace Propulsion. Propuls. Power Res. 2016: 1-21.
  • [10] Carleton, F.B.; Klein, N.; Krallis, K.; Weinberg, F.J. Laser Ignition of Liquid Propellants. Proc. Symp. (Int.) Combustion 1991, 23(1): 1323-1329.
  • [11] Wu, X.J.; Rao, G.N.; Chen, L.P.; Chen, W.H.; Wang, J.N.; Zhang, C.N. Analysis for Decomposition Characteristics and Piecewise Thermokinetics of Nitramine Modified Double-base Propellant with High Solid Content. Propellants Explos. Pyrotech. 2017, 42: 1-7.
  • [12] Mcdonald, B.A. Study of the Effects of Aging under Humidity Control on the Thermal Decomposition of NC/NG/BTTN/RDX Propellants. Propellants Explos. Pyrotech. 2011, 36(6): 576-583.
  • [13] Liu, R.; Zhang, T.L.; Yang, L.; Zhou, Z.N. Dynamic Pressure Thermal Analysis of Double-base Propellants Containing RDX. Centr. Eur. J. Chem. 2014, 12(6): 672-677.
  • [14] Isbell, R.A.; Brewster, M.Q. Optical Properties of Energetic Materials: RDX, HMX, AP, NC/NG, and HTPB. Propellants Explos. Pyrotech. 1998, 23(4): 218-224.
  • [15] Zhang, X.; Hikal, W.; Zhang, Y.; Bhattcacharia, S.; Li, L.; Wang, S.R.; Weeks, B.L. Direct Laser Initiation and Improved Thermal Stability of Nitrocellulose/Graphene Oxide Nanocomposites. Appl. Phys. Lett. 2013, 102(14): 5428.
  • [16] Ulas, A.; Kuo, K.K. Laser-induced Ignition of Solid Propellants for Gas Generators. Fuel 2008, 87(6): 639-646.
  • [17] Li, L.B.; Chen, X.; Zhou, C.H.; Zhu, M.; Musa, O. Experimental Investigation on Laser Ignition and Combustion Characteristics of NEPE Propellant. Propellants Explos. Pyrotech. 2017, 42(9): 1-10.
  • [18] Ahmad, S.R.; Russell, D.A.; Leach, C.J. Studies into Laser Ignition of Unconfined Propellants. Propellants Explos. Pyrotech. 2001, 26(5): 235-245.
  • [19] Ahmad, S.R.; Russell, D.A. Laser Ignition of Pyrotechnics-Effects of Wavelength, Composition and Confinement. Propellants Explos. Pyrotech. 2005, 30(2): 131-139.
  • [20] Liu, C.J.; Li, X.D.; Li, R.; Yang, Q.; Zhang, H.P.; Yang, B.; Yang, G.C. Laser Ignited Combustion of Graphene Oxide/Nitrocellulose Membrane for Solid Propellant micro Thruster and Solar Water Distillation. Carbon 2020, 166: 138-147.
  • [21] Li, X.D.; Huang, B.; Li, R.; Zhang, H.P.; Qin, W.Z.; Qiao, Z.Q.; Liu, Y.S.; Yang, G.C. Laser-Ignited Relay-Domino-Like Reactions in Graphene Oxide/CL- 20 Films for High-Temperature Pulse Preparation of Bi- Layered Photothermal Membranes. Small 2019, 1900338.
  • [22] Courty, L.; Gillard, P.; Ehrhardt, J.; Baschung, B. Experimental Determination of Ignition and Combustion Characteristics of Insensitive Gun Propellants based on RDX and Nitrocellulose. Combust. Flame 2021, 229: 111402.
  • [23] Fang, X.; Sharma, M.; Stennett, C.; Gill, P.P. Optical Sensitisation of Energetic Crystals with Gold Nanoparticles for Laser Ignition. Combust. Flame 2017, 183: 15-21.
  • [24] Bayat, Y.; Malmir, S.; Hajighasemali, F.; Dehghani, H. Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane Using Multi-walled Carbon Nanotubesupported Palladium Catalysts: An Optimization Approach. Cent. Eur. J. Energ. Mater. 2015, 12(3): 439-458.
  • [25] Denisyuk, A.P.; Milekhin, Y. M.; Demidova, L.A.; Sizov, V.A. Effect of Carbon Nanotubes on the Catalysis of Propellant Combustion. Dokl. Chem. 2018, 483(2): 301-303.
  • [26] Ajayan, P.M.; Terrones, M.; De la Guardia, A.; Huc, V.; Grobert, N.; Wei, B.Q.; Lezec, H.; Ramanath, G.; Ebbesen, T.W. Nanotubes in a Flash Ignition and Reconstruction. Science 2002, 296(5568): 705.
  • [27] Kim, J.H.; Ahn, J.Y.; Park, H.S.; Kim, S.H. Optical Ignition of Nanoenergetic Materials: The Role of Single-walled Carbon Nanotubes as Potential Optical Igniters. Combust. Flame 2013, 160(4): 830-834.
  • [28] Tseng, S.H.; Tai, N.H.; Hsu, W.K.; Chen, L.J.; Wang, J.H.; Chiu, C.C.; Chi, Y.L.; Chou, L.J.; Leou, K.C. Ignition of Carbon Nanotubes Using a Photoflash. Carbon 2007, 45(5): 958-964.
  • [29] Kim, J.H.; Cho, M.H.; Kim, K.J.; Kim, S.H. Laser Ignition and Controlled Explosion of Nanoenergetic Materials: The Role of Multi-walled Carbon Nanotubes. Carbon 2017, 118: 268-277.
  • [30] Kim, J.H.; Kim, S.B.; Choi, M.G.; Kim, D.H.; Kim, K.T.; Lee, H.M.; Lee, H.W.; Kim, J.M.; Kim, S.H. Flash-ignitable Nanoenergetic Materials with Tunable Underwater Explosion Reactivity: The Role of Sea Urchin-like Carbon Nanotubes.Combust. Flame 2015, 162(4): 1448-1454.
  • [31] Manaa, M.R.; Mitchell, A.R.; Garza, R.G.; Pagoria, P.F.; Watkins, B.E. Flash Ignition and Initiation of Explosives-Nanotubes Mixture. J. Am. Chem. Soc. 2005, 127(40):13786.
  • [32] Shen, J.P.; Liu, Z.T.; Xu, B.; Liang, H.; Zhu, Y.; Liao, X.; Wang, Z.S. Influence of Carbon Nanofibers on Thermal and Mechanical Properties of NC-TEGDN-RDX Triple-base Gun Propellants. Propellants Explos. Pyrotech. 2019, 44: 355-361.
  • [33] Shen, J.P.; Liu, Z.T.; Xu, B.; Chen, F.Y.; Zhu, Y.; Fu, Y.; Kline, D.J.; Liao, X.; Wang, Z.S. Tuning the Thermal, Mechanical, and Combustion Properties of NCTEGDN-RDX Propellants via Incorporation of Graphene Nanoplates. J. Energ. Mater. 2020, 38(3): 326-335.
  • [34] Herreros, D.N.; Fang, X. Laser Ignition of Elastomer-modified Cast Double-base (EMCDB) Propellant Using a Diode Laser. Opt. Laser Technol. 2017, 89: 21-26.
  • [35] Jing, W.W.; Dang, Z.M.; Yang, G.P. The Thermal Decomposition Behavior of RDX-base Propellants. J. Therm. Anal. Calorim. 2005, 79(1): 107-113.
  • [36] Wang, X.; Liu, Q.C.; Wu, S.Y.; Xu, B.X.; Xu, H.X. Multilayer Polypyrrole Nanosheets with Self-organized Surface Structures for Flexible and Efficient Solar-Thermal Energy Conversion. Adv. Mater. 2019, 31(19) paper 1807716: 1-9.
  • [37] Kumanek, B.; Janas, D. Thermal Conductivity of Carbon Nanotube Networks: A Review. J. Mater. Sci. 2019, 54: 7397-7429.
  • [38] Han, Z.D.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36(7): 914-944.
  • [39] Ritchie, S.J.; Thynell, S.T.; Kuo, K.K. Modeling and Experiments of Laser-induced Ignition of Nitramine Propellants. J. Propul. Power 1997, 13(3): 367-374.
  • [40] Damm, D.; Maiorov, M. Thermal and Radiative Transport Analysis of Laser Ignition of Energetic Materials. Proc. SPIE 2010, 7795: 779502.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-39056492-be6b-438c-88ca-56eae7ce53be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.