PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Foci for Determining the Insensitivity Features of Nanometer RDX: Nanoscale Particle Size and Moderate Thermal Reactivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the reasons why nanometer RDX showed lower sensitivity than micro RDX is discussed. Herein we supposed two factors affect the sensitivity of nanometer RDX. Firstly, according detonation physics models, a nanometer particle size results in small hot spots and a high critical temperature. These features suggested high safety for nanometer RDX based on the hot spot theory. A further factor is the thermal reactivity of nanometer RDX, which considerably affects the safety of nanometer energetic materials. Employing the Kinetic Compensation Effect, we calculated the kinetic parameters of micro and nanometer RDX. The results indicated that there was no obvious distinction between the activation energies of micro and nanometer RDX, which implies almost the same reactivity of micro and nanometer RDX. Incorporating the results of small hot spots, high critical temperature, and the unchanged reactivity of micro and nanometer RDX, we concluded that nanometer RDX should exhibit low sensitivity as an intrinsic feature.
Słowa kluczowe
Rocznik
Strony
799--815
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, North University of China, Taiyuan, China
autor
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, China
autor
  • China Ordnance Institute of Science and Technology, Beijing, China
autor
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, China
  • Hubei Space Sanjiang Honglin Detection and Control Co. Ltd, Hubei Xiaogan, China
autor
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, China
Bibliografia
  • [1] Hermann Schmid, Coating of Explosives, J. Hazard. Mater., 1986, 13(1), 89-101.
  • [2] Athar J., Ghosh M., Dendage P.S., Nanocomposites: an Ideal Coating Material to Reduce the Sensitivity of Hydrazinium Nitroformate (HNF), Propellants Explos. Pyrotech., 2010, 35(2), 153-158.
  • [3] An C.W., Wang J.Y., Xu W.Z., Preparation and Properties of HMX Coated with a Composite of TNT/Energetic Material, Propellants Explos. Pyrotech., 2010, 35(4), 365-372.
  • [4] Borne L., Patedoye J.-C., Quantitative Characterization of Internal Defects in RDX Crystals, Propellants Explos. Pyrotech., 1999, 24(4), 255-259.
  • [5] Doherty R.M., Relationship between RDX Properties and Sensitivity, Propellants Explos. Pyrotech., 2008, 33(1), 4-13.
  • [6] Li M., Huang M., Kang B., Quality Evaluation of RDX Crystalline Particles by Confined Quasi-static Compression Method, Propellants Explos. Pyrotech., 2007, 32(5), 401-405.
  • [7] Borne L., Mory J., Schlesser F., Reduced Sensitivity RDX (RS-RDX) in Pressed Formulations: Respective Effects of Intra-granular Pores, Extra-granular Pores and Pore Sizes, Propellants Explos. Pyrotech., 2008, 33(1), 37-43.
  • [8] Krober H., Crystallization of Insensitive HMX, Propellants Explos. Pyrotech., 2008, 33(1): 33-36.
  • [9] Song X.L., Li F.S., Dependence of Particle Size and Size Distribution on Mechanical Sensitivity and Thermal Stability of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine, Defence Sci. J., 2009, 59(1), 37-42.
  • [10] Song X.L., Wang Y., An C.W., Dendence of Particle Morphology and Size on the Mechanical Sensitivity and Thermal Stability of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Hazard. Mater., 2008, 159(2-3), 222-229.
  • [11] Czerski H., Proud W.G., Relationship between the Morphology of Granular Cyclotrimethyene-trinitramine and Its Shock Sensitivity, J. Appl. Phys., 2007, 102, 1-8.
  • [12] Field J.E., Hot Spot Ignition Mechanism for Explosive, Accounts Chem. Res., 1992, 25, 498-496.
  • [13] Khasainov B.A., Borisov A.A., Ermolaev B.S., Two-phase Visco-plastic Model of Shock Initiation of Detonation in High Density Pressed Explosives, 7th Symp. Int. on Detonation, Annapolis, 1981, 435-447.
  • [14] Partom Y., Aiod Collapse Model for Shock Initiation, 7th Symp. Int. on Detonation, Annapolis, 1981, 506-516.
  • [15] Politzer P., Lane P., Energetics of Ammonium Perchlorate Decomposition Steps, J. Mol. Struct.: THEOCHEM, 1998, 454(2-3), 229-235.
  • [16] Boldyrev V.V., Thermal Decomposition of Ammonium Perchlorate, Thermochim. Acta, 2006, 443(1), 1-36.
  • [17] Yuan Y., Jiang W., Wang Y.J., Hydrothermal Preparation of Fe2O3/Graphene Nanocomposite and its Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate, Appl. Surf. Sci., 2014, 303(1), 354-359.
  • [18] Wang Y., Jiang W., Song D., A Feature on Ensuring Safety of Superfine Explosives: the Similar Thermolysis Characteristics Between Micro and Nano Nitroamines, J. Therm. Anal. Calorim., 2013, 111(1), 85-92.
  • [19] Wang Y., Jiang W., Song X.L., Insensitive HMX (Octahydro-1,3,5,7-Tetranitro-1,3,5,7-tetrazocine) Nanocrystals Fabricated by High-yield, Low-cost Mechanical Milling, Cent. Eur. J. Energ. Mater., 2013, 10(2), 3-15.
  • [20] Moulard H., Particular Aspect of the Explosive Particle Size Effect on Shock Sensitivity of Cast Formulations, 9th Int. Detonation Symp., Portland, 1989, 25-38.
  • [21] Partom Y., A Void Collapse Model for Shock Initiation, 7th Symp. Int. on Detonation, Annapolis, 1981, 6-16.
  • [22] Merzhanov A.G., Barzikin V.V., Gontkovskaya V.T., The Problem of Hot-spot Thermal Explosion, Doklady AN SSSR, 1963, 148, 380-391.
  • [23] Vyazovkin S., Burnham A.K., Criado J.M., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 2011, 520, 1-19.
  • [24] Kaplowitz D.A., Jian G.Q., Gaskell K., Synthesis and Reactive Properties of Iron Oxide-coated Nanoaluminum, J. Energ. Mater., 2014, 32(2), 95-105.
  • [25] Russell R., Bless S., Pantoya M., Impact-driven Thermite Reactions with Iodine Pentoxide and Silver Oxide, J. Energ. Mater., 2011, 29(2), 175-192.
  • [26] Song X.L., Li F.S., Zhang J.L., Preparation, Mechanical Sensitivity and Thermal Decomposition of AP/Fe2O3 Nanocomposite, J. Solid Rocket Technol., 2009, 32(3), 306-309.
  • [27] Armstrong R.W., Bardenhagen S.G., Elban W.L., Deformation-induced Hot-spot Consequences of AP and RDX Crystal Hardness Measurements, Int. J. Energ. Mater. Chem. Propul., 2012, 11(5), 413-425.
  • [28] Wang Y., Song X.L., Song D., A Versatile Methodology Using Sol-gel, Supercritical Extraction, and Etching to Fabricate a Nitramine Explosive: Nanometer HNIW, J. Energ. Mater., 2013, 31(1), 49-59.
  • [29] Guo X.D., Ouyang G., Liu J., Massive Preparation of Reduced-sensitivity Nano CL-20 and Its Characterization, J. Energ. Mater., 2014, 33(1), 24-33.
  • [30] Huang H., Wang J.Y., Xu W.Z., Effect of Habit Modifiers on Morphology and Properties of Nano-HNS Explosive in Prefilming Twin-fluid Nozzle-assisted Precipitation, Propellants Explos. Pyrotech., 2009, 34(1), 78-83.
  • [31] Wang Y., Song X.L., Jiang W., Mechanism Investigation for Thermite Reactions of Aluminum/Iron-Oxide Nanocomposites Based on Residues Analysis, Trans. Nonferrous Met. Soc. China, 2014, 24(1), 263-270.
  • [32] Wang Y., Jiang W., Zhang X.F., Energy Release Characteristics of Impact-initiated Energetic Aluminum-Magnesium Mechanical Alloy Particles with Nanometer-scale Structure, Thermochim. Acta, 2011, 512(1-2), 233-239.
  • [33] Shi X.F., Wang J.Y., Li X.D., Preparation and Characterization of HMX/Estane Nanocomposites, Cent. Eur. J. Energ. Mater., 2014, 11(3), 433-442.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38fdaaa5-63a3-423e-944a-bef4cedd8885
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.