PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigations of laminated veneer lumber panels

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania eksperymentalne i numeryczne paneli z drewna klejonego warstwowo z fornirów
Języki publikacji
EN
Abstrakty
EN
This paper presents a study of laminated veneer lumber panels subjected to bending. Laminated veneer lumber (LVL) is a sustainable building material manufactured by laminating 3-4-mm-thick wood veneers, using adhesives. The authors of this article studied the behaviour of type R laminated veneer lumber (LVL R), in which all veneers are glued together longitudinally - along the grain. Tensile, compressive and bending tests of LVL R were conducted. The short-term behaviour, load carrying-capacity, mode of failure and load-deflection of the LVL R panels were investigated. The authors observed failure modes at the collapse load, associated with the delamination and cracking of veneer layers in the tensile zone. What is more, two non-linear finite element models of the tested LVL R panel were developed and verified against the experimental results. In the 3D finite element model, LVL R was described as an elastic-perfectly plastic material. In the 2D finite element model, on the other hand, it was described as an orthotropic material and its failure was captured using the Hashin damage model. The comparison of the numerical and experimental analyses demonstrated that the adopted numerical models yielded the results similar to the experimental results.
PL
W pracy przedstawiono wyniki badań zginanych paneli wykonanych z drewna klejonego warstwowo z fornirów (LVL). Materiał zgodny z ideą zrównoważonego budownictwa powstaje przez połączenie 3-4 mm fornirów za pomocą kleju. Autorzy badali zachowanie drewna klejonego warstwowo z fornirów, w którym wszystkie forniry są sklejone wzdłużnie - wzdłuż włókien (LVL R). Wyznaczono wytrzymałość materiału LVL R na rozciąganie, ściskanie i zginanie. Określono zachowanie, nośność, formę zniszczenia paneli LVL R oraz zależność siła-przemieszczenie. Autorzy zaobserwowali formę zniszczenia paneli związaną z rozwarstwianiem warstw materiału oraz z pękaniem fornirów w rozciąganej strefie panelu. Przygotowano dwa modele numeryczne panelu LVL R i porównano ich zachowanie z laboratoryjną próbą zginania. W trójwymiarowym modelu numerycznym, zachowanie LVL R opisano za pomocą modelu sprężysto-idealnie plastycznego. W dwuwymiarowym modelu numerycznym materiał LVL R opisano, wykorzystując model ortotropowy a jego zniszczenie uwzględniono, biorąc po uwagę kryterium Hashin’a. Wyniki otrzymane z analiz numerycznych były zbliżone do rezultatów badań.
Rocznik
Strony
351--372
Opis fizyczny
Bibliogr. 74 poz., il., tab.
Twórcy
  • University of Technology, Faculty of Civil and Transport Engineering, Poznan, Poland
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Poznan, Poland
Bibliografia
  • [1] A. M. Harte, “Timber engineering: an introduction”, in ICE Manual of Construction Materials: Volume I/II: Fundamentals and theory; Concrete; Asphalts in road construction; Masonry, M. Forde, Ed., ICE Publishing, Chapter 60, 2009.
  • [2] A. Karolak, J. Jasieńko and R. Raszczuk, “Historical scarf and splice carpentry joints: state of the art”, Heritage Science, vol. 8, article number 105, 2020. https://doi.org/10.1186/s40494-020-00448-2
  • [3] P. Witomski, A. Krajewski and P. Kozakiewicz, “Selected mechanical properties of Scots pine wood from antique churches of Central Poland”, European Journal of Wood and Wood Products, vol. 72, pp. 293-296, 2014. https://doi.org/10.1007/s00107-014-0783-y
  • [4] E. Kotwica and S. Krzosek, “Timber bridges - revive of old and new bridges built in Switzerland”, Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology, vol. 92, pp. 207-210, 2015.
  • [5] B. Franke, S. Franke, A. Müller, M. Vogel, F. Scharmacher and T. Tannert, “Long term monitoring of timber bridges - Assessment and results”, Advanced Materials Research, vol. 778, pp. 749-756, 2013. https://doi.org/10.4028/www.scientific.net/AMR.778.749
  • [6] T. Alapieti, R. Mikkola, P. Pasanen and H. Salonen, “The influence of wooden interior materials on indoor environment: a review”, European Journal of Wood and Wood Products, vol. 78, pp. 617-634, 2020. https://doi.org/10.1007/s00107-020-01532-x
  • [7] A. Bragov, L. Igumnov, F. dell’Isola, A. Konstantinov, A. Lomunov and T. Iuzhina, “Dynamic testing of lime-tree (Tilia Europoea) and pine (Pinaceae) for wood model identification”, Materials, vol. 13, no. 22, article 5261, 2020. https://doi.org/10.3390/ma13225261
  • [8] P. G. Kossakowski, “Influence of anisotropy on the energy release rate GI for highly orthotropic materials”, Journal of Theoretical and Applied Mechanics, vol. 45, no. 4, pp. 739-752, 2007.
  • [9] P. G. Kossakowski, “Fracture toughness of pine wood for I and II loading modes”, Archives of Civil Engineering, vol. 54, no. 3, pp. 509-529, 2008.
  • [10] P. G. Kossakowski, “Mixed mode I/II fracture toughness of pine wood”, Archives of Civil Engineering, vol. 55, no. 2, pp. 199-227, 2009.
  • [11] M. Szumigała, E. Szumigała and Ł. Polus, “Laboratory tests of new connectors for timber-concrete composite structures”, Engineering Transactions, vol. 66, no. 2, pp. 161-173, 2018.
  • [12] M. Fragiacomo and E. Łukaszewska, “Time-dependent behaviour of timber-concrete composite floors with prefabricated concrete slabs”, Engineering Structures, vol. 52, pp. 687-696, 2013. https://doi.org/10.1016/j.engstruct.2013.03.031
  • [13] A. Dias, J. Skinner, K. Crews and T. Tannert, “Timber-concrete-composites increasing the use of timber in construction”, European Journal of Wood and Wood Products, vol. 74, no. 3, pp. 443-451. 2016. https://doi.org/10.1007/s00107-015-0975-0
  • [14] N. Khorsandnia, H. R. Valipour and K. Crews, “Experimental and analytical investigation of short-term behavior of LVL-concrete composite connections and beams”, Construction and Building Materials, vol. 37, pp. 229-238, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.022
  • [15] P. Kyvelou, L. Gardner and D. A. Nethercot, “Testing and analysis of composite cold-formed steel - wood-based flooring systems”, Journal of Structural Engineering, vol. 143, no. 11, 2017. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001885
  • [16] A. Hassanieh, H. R. Valipour and M. A. Bradford, “Experimental and numerical study of steel-timber composite (STC) beams”, Journal of Constructional Steel Research, vol. 122, pp. 367-378, 2016. https://doi.org/10.1016/j.jcsr.2016.04.005
  • [17] M. Chybiński and Ł. Polus, “Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections”, Construction and Building Materials, vol. 226, pp. 317-330. 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.101
  • [18] S. M. Saleh and N. A. Jasim, “Structural behavior of timber aluminum composite beams under static loads”, International Journal of Research in Engineering and Technology, vol. 3, no. 10, pp. 1166-1173, 2014.
  • [19] M. Szumigała, M. Chybiński and Ł. Polus, “Preliminary analysis of the aluminium-timber composite beams”, Civil and Environmental Engineering Reports, vol. 27, no. 4, pp. 131-141, 2017. https://doi.org/10.1515/ceer- 2017-0056
  • [20] C. Bedon and M. Fragiacomo, “Numerical analysis of timber-to-timber joints and composite beams with inclined selftapping screws”, Composite Structures, vol. 207, pp. 13-28, 2019. https://doi.org/10.1016/j.compstruct.2018.09.008
  • [21] G. Schiro, I. Giongo, W. Sebastian, D. Riccadonna and M. Piazza, “Testing of timber-to-timber screw-connections in hybrid configurations”, Construction and Building Materials, vol. 171, pp. 170-186, 2018. https://doi.org/10.1016/j.conbuildmat.2018.03.078
  • [22] K. Furtak and K. Rodacki, “Experimental investigations of load-bearing capacity of composite timber-glass Ibeams”, Archives of Civil and Mechanical Engineering, vol. 18, no. 3, pp. 956-964, 2018. https://doi.org/10.1016/j.acme.2018.02.002
  • [23] M. Kozłowski, M. Kadela and J. Hulimka, “Numerical investigation of structural behavior of timber-glass composite beams”, Procedia Engineering, vol. 161, pp. 78-89, 2016. https://doi.org/10.1016/j.proeng.2016.08.838
  • [24] P. Rapp, “Application of adhesive joints in reinforcement and reconstruction of weakened wooden elements loaded axially”, Drewno, vol. 59, no. 196, pp. 59-73, 2016. https://doi.org/10.12841/wood.1644-3985.128.05
  • [25] P. Rapp, “The numerical modeling of adhesive joints in reinforcement of wooden elements, subjected to bending and shearing”, Drewno, vol. 60, no. 199, pp. 21-36, 2017. https://doi.org/10.12841/wood.1644-3985.192.02
  • [26] I. Burawska, M. Zbieć, A. Tomusiak and P. Beer, “Local reinforcement of timber with composite and lignocellulosic materials”, BioResources, vol. 10, 457-468, 2015.
  • [27] M. Dudziak, I. Malujda, K. Talaśka, T. Łodygowski and W. Sumelka, “Analysis of the process of wood plasticization by hot rolling”, Journal of Theoretical and Applied Mechanics, vol. 54, no. 2, pp. 503-516. 2016. https://doi.org/10.15632/jtam-pl.54.2.503
  • [28] M. Wieruszewski, G. Gołuński, G. J. Hruzik and V. Gotych, “Glued elements for construction”, Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology, vol. 72, pp. 453-458, 2010.
  • [29] J. Porteous and A. Kermani, “Structural Timber Design to Eurocode 5”, 2nd ed., Chichester: Wiley-Blackwell, 2013.
  • [30] P. Dietsch and T. Tannert, “Assessing the integrity of glued-laminated timber elements”, Construction and Building Materials, vol. 101, no. 2, pp. 1259-1270, 2015. https://doi.org/10.1016/j.conbuildmat.2015.06.064
  • [31] R. Mirski, D. Dziurka, M. Chuda-Kowalska, M. Wieruszewski, J. Kawalerczyk and A. Trociński, “The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part I: Evaluation of the quality of the pine timber in the bending test”, Materials, vol. 13, article 3957, 2020. https://doi.org/10.3390/ma13183957
  • [32] R. Mirski, D. Dziurka, M. Chuda-Kowalska, J. Kawalerczyk, M. Kuliński and K. Łabęda, “The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part II: Strength properties of glued laminated timber”, Materials, vol. 13, article 4029, 2020. https://doi.org/10.3390/ma13184029
  • [33] R. Brandner, A. Ringhofer and T. Reichinger, “Performance of axially-loaded self-tapping screws in hardwood: Properties and design”, Engineering Structures, vol. 188, pp. 677-699, 2019. https://doi.org/10.1016/j.engstruct.2019.03.018
  • [34] T. Gečys, G. Šaučiuvėnas, L. Ustinovichius, C. Miedzialowski and P. Sulik, “Surface based cohesive behavior implementation for the strength analysis of glued-in threaded rods in glulam”, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 68, no. 5, pp. 1149-1157, 2020. https://doi.org/10.24425/bpasts.2020.134665
  • [35] R. Brandner, “Production and technology of cross laminated timber (CLT): State-of-the-art report”, in European Conference on Cross Laminated Timber, R. Harris, A. Ringhofer and G. Schickhofer, Eds., Graz: Graz University of Technology, 2013, pp. 3-36.
  • [36] M. Jeleč, D. Varevac and V. Rajčić, “Cross-laminated timber (CLT) - a state of the art report”, Građevinar, vol. 70, no. 2, pp. 75-95, 2018. https://doi.org/10.14256/JCE.2071.2017
  • [37] O. Espinoza, V. R. Trujillo, M. F. Laguarda and U. Buehlmann, “Cross-laminated timber: Status and research needs in Europe”, BioResources, vol. 11, pp. 281-295, 2016.
  • [38] A. Ringhofer, R. Brandner and H. J. Blaß, “Cross laminated timber (CLT): Design approaches for dowel-type fasteners and connections”, Engineering Structures, vol. 171, pp. 849-861, 2018. https://doi.org/10.1016/j.engstruct.2018.05.032
  • [39] R. Brandner, A. Ringhofer and M. Grabner, “Probabilistic models for the withdrawal behavior of single selftapping screws in the narrow face of cross laminated timber (CLT)”, European Journal of Wood and Wood Products, vol. 76, no. 1, pp. 13-30, 2018. https://doi.org/10.1007/s00107-017-1226-3
  • [40] T. Tannert, M. Follesa, M. Fragiacomo, P. González, H. Isoda, D. Moroder, H. Xiong and J. van de Lindt, “Seismic Design of Cross-laminated Timber Buildings”, Wood and Fiber Science, vol. 50, pp. 3-26, 2018.
  • [41] Z. Chena, Q. Lei, R. He, Z. Zhang, A. Jalal Khan Chowdhury, “Review on antibacterial biocomposites of structural laminated veneer lumber”, Saudi Journal of Biological Sciences, vol. 23, no. 1, pp. 142-147, 2016. https://doi.org/10.1016/j.sjbs.2015.09.025
  • [42] A. Özçifçi, “Effect of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL)”, Building and Environment, vol. 42, pp. 1510-1514, 2007. https://doi.org/10.1016/j.buildenv.2005.12.024
  • [43] H. Ido, H. Nagao, H. Kato, A. Miyatake and Y. Hiramatsu, “Strength properties of laminated veneer lumber in compression perpendicular to its grain”, Journal of Wood Science, vol. 56, pp. 422-428, 2010. https://doi.org/10.1007/s10086-010-1116-3
  • [44] C. Pirvu, H. Yoshida and K. Taki, “Development of LVL frame structures using glued metal plate joints I: bond quality and joint performance of LVL-metal joints using epoxy resins”, Journal of Wood Science, vol. 45, pp. 284-290, 1999. https://doi.org/10.1007/BF00833492
  • [45] C. Pirvu, H. Yoshida, M. Inayama, M. Yasumura and K. Taki, “Development of LVL frame structures using glued metal plate joints II: strength properties and failure behavior under lateral loading”, Journal of Wood Science, vol. 46, pp. 193-201, 2000. https://doi.org/10.1007/BF00776449
  • [46] A. Özçifçi, “The effects of pilot hole, screw types and layer thickness on the withdrawal strength of screws in laminated veneer lumber”, Materials and Design, vol. 30, pp. 2355-2358, 2009. https://doi.org/10.1016/j.matdes.2008.11.001
  • [47] G. Celebi and M. Kilic, “Nail and screw withdrawal strength of laminated veneer lumber made up hardwood and softwood layers”, Construction and Building Materials, 21, pp. 894-900, 2007. https://doi.org/10.1016/j.conbuildmat.2005.12.015
  • [48] M. Dorn, K. Habrová, R. Koubek and E. Serrano, “Determination of coefficients of friction for laminated veneer lumber on steel under high pressure loads”, Friction, 2020. https://doi.org/10.1007/s40544-020-0377-0
  • [49] C. Y. C. Purba, G. Pot, J. Viguier, J. Ruelle and L. Denaud, “The influence of veneer thickness and knot proportion on the mechanical properties of laminated veneer lumber (LVL) made from secondary quality hardwood”, European Journal of Wood and Wood Products, vol. 77, pp. 393-404, 2019. https://doi.org/10.1007/s00107-019-01400-3
  • [50] P. Berard, P. Yang, H. Yamauchi, K. Umemura and S. Kawai, “Modeling of a cylindrical laminated veneer lumber I: mechanical properties of hinoki (Chamaecyparis obtusa) and the reliability of a nonlinear finite elements model of a fourpoint bending test”, Journal of Wood Science, vol. 57, pp. 100-106, 2011. https://doi.org/10.1007/s10086-010-1150-1
  • [51] Y.-J. Song, S.-I. Hong, J.-S. Suh and S.-B. Park, “Strength performance evaluation of moment resistance for cylindrical-LVL column using GFRP reinforced wooden pin”, Wood Research, vol. 62, no. 3, pp. 417-426, 2017.
  • [52] Z. Bednarek, D. Pieniak and P. Ogrodnik, “Wytrzymałość na zginanie i niezawodność kompozytu drewnianego LVL w warunkach podwyższonych temperatur”, Zeszyty Naukowe SGSP, vol. 40, pp. 5-17, 2010. (in Polish)
  • [53] M. Bakalarz and P. Kossakowski, “The flexural capacity of laminated veneer lumber beams strengthened with AFRP and GFRP sheets”, Technical Transactions, Civil Engineering, vol. 2, pp. 85-94, 2019. https://doi.org/10.4467/2353737XCT.19.023.10159
  • [54] M. Bakalarz and P. Kossakowski, “Mechanical properties of laminated veneer lumber beams strengthened with CFRP sheets”, Archives of Civil Engineering, vol. 65, no. 2, pp. 57-66, 2019. https://doi.org/10.2478/ace-2019-0018
  • [55] M. Bakalarz, P. Kossakowski and P. Tworzewski, “Strengthening of bent LVL beams with near-surface mounted (NSM) FRP reinforcement”, Materials, vol. 13, no. 10, article 2350, 2020. https://doi.org/10.3390/ma13102350
  • [56] B. Kawecki and J. Podgórski, “3D ABAQUS simulation of bent softwood elements”, Archives of Civil Engineering, vol. 66 no. 3, pp. 323-337, 2020. https://doi.org/10.24425/ace.2020.134400
  • [57] B. P. Gilbert, H. Bailleres, H. Zhang and R. L. McGavin, “Strength modelling of Laminated Veneer Lumber (LVL) beams”, Construction and Building Materials, vol. 149, pp. 763-777, 2017. https://doi.org/10.1016/j.conbuildmat.2017.05.153
  • [58] H. Valipour, N. Khorsandnia, K. Crews and S. Foster, “A simple strategy for constitutive modelling of timber”, Construction and Building Materials, vol. 53, pp. 138-148, 2014. https://doi.org/10.1016/j.conbuildmat.2013.11.100
  • [59] N. Khorsandnia, H. R. Valipour and K. Crews, “Nonlinear finite element analysis of timber beams and joints using the layered approach and hypoelastic constitutive law”, Engineering Structures, vol. 46, pp. 606-614, 2013. https://doi.org/10.1016/j.engstruct.2012.08.017
  • [60] M. Komorowski, “Manual of design and build in the STEICO system, Basic information, Building physics, Guidelines”, Warsaw: Forestor Communication, 2017. (in Polish)
  • [61] European Committee for Standardization, EN 1990, Eurocode 0, Basis of structural design, European Committee for Standardization, Brussels, Belgium, 2002.
  • [62] European Committee for Standardization, EN 408, Timber structures - Structural timber and glued laminated timber - Determination of some physical and mechanical properties; European Committee for Standardization: Brussels, Belgium, 2012.
  • [63] European Committee for Standardization, EN 13183-1, Moisture content of a piece of sawn timber - Part 1: Determination by oven dry method; European Committee for Standardization: Brussels, Belgium, 2004.
  • [64] Abaqus 6.13 Documentation, Abaqus Analysis Users Guide, Abaqus Theory Guide.
  • [65] H. T. Nguyen and S. E. Kim, “Finite element modeling of push-out tests for large stud shear connectors”, Journal of Constructional Steel Research, vol. 65, pp. 1909-1920, 2009. https://doi.org/10.1016/j.jcsr.2009.06.010
  • [66] M. P. Budziak and T. Garbowski, “Failure assessment of steel-concrete composite column under blast loading”, Engineering Transactions, vol. 62, no. 1, pp. 61-84, 2014.
  • [67] M. Sciomenta, L. Spera, C. Bedon, V. Rinaldi, M. Fragiacomo and M. Romagnoli, “Mechanical characterization of novel homogeneous beech and hybrid beech-corsican pine thin cross-laminated timber panels”, Construction and Building Materials, article 121589, 2020. https://doi.org/10.1016/j.conbuildmat.2020.121589
  • [68] Ł. Polus and M. Szumigała, “An experimental and numerical study of aluminium-concrete joints and composite beams”, Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 375-390, 2019. https://doi.org/10.1016/j.acme.2018.11.007
  • [69] A. Pełka-Sawenko, T. Wróblewski and M. Szumigała, “Validation of computational models of steel-concrete composite beams”, Engineering Transactions, vol. 64, no. 1, pp. 53-67, 2016.
  • [70] P. Szewczyk and M. Szumigała, “Welding deformation in a structure strengthened under load in an empirical-numerical study”, in Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues. Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM), Gdansk, Poland, 8-11 September 2015, M. Kleiber, T. Burczynski, K. Wilde, J. Gorski, K. Winkelmann and L. Smakosz, Eds., London: CRC Press, 2016, pp. 563-566.
  • [71] P. Szewczyk, “Wzmacnianie pod obciążeniem belek zespolonych stalowo-betonowych w eksperymencie numerycznym i fizycznym”, PhD thesis, West Pomeranian University of Technology in Szczecin, Poland, 2016. (in Polish)
  • [72] P. Różyło, “Stateczność i stany graniczne ściskanych cienkościennych profili kompozytowych”, Lublin: Wydawnictwo Politechniki Lubelskiej, 2019. (in Polish)
  • [73] P. Rozylo, “Failure analysis of thin-walled composite structures using independent advanced damage models”, Composite Structures, vol. 262, article 113598, 2021. https://doi.org/10.1016/j.compstruct.2021.113598
  • [74] A. B. Widodo, “Application of laminated veneer lumber (LVL) on the wooden boat construction”, IPTEK The Journal for Technology and Science, vol. 23, no. 1, pp. 8-14, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38f9efed-0553-4f9c-a8c3-76a90916002e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.