Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The research was conducted around reclaimed landfill, located on the suburb of Otwock, around 25 km south-west of Warsaw. The objective of this study was to identify the chemical composition of groundwater and to determine the landfill impact on the chemical composition of groundwater downgrading from the landfill. Otwock landfill is located in very permeable area, where leachate quickly seeps into ground-water and plays a key role in controlling redox condition (and chemical composition of groundwater) of the downgradient area. High concentrations of HCO3-,Cl-, Ca2+, Mg2+, Na+, K+, Fetot. as well as DOC in groundwater downgradient from the landfill (in comparison to background water) likely indicate that groundwater quality is being significantly affected by leachate percolation. Currently, the load of contamination is released from landfill periodically and slowly moves (70 m/y) in the aquifer along the flow direction. The effect of distance of the piezometer from the pollution source was also investigated. As expected, water from the nearest piezometer to the land-fill showed the highest values of contaminant (water temperature, specific electrical conductivity, sodium, iron, chlorides (except for summer and autumn analysis) and calcium (except for winter analysis)). Chemical status of groundwater downgradient from the landfill is poor.
Czasopismo
Rocznik
Tom
Strony
69--81
Opis fizyczny
Bibliogr. 31 poz., tab., rys.
Twórcy
autor
- Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
Bibliografia
- 1. Abichou T., Chanton J., Powelson D., Fleiger J., Escoriaza S., Lei Y., Stern J., 2006. Methane flux and oxidation at two types of intermediate landfill covers, Waste Management, 26 (11), 1305–1312.
- 2. Baedecker M.J., Apgar M.A., 1984. Hydrogeological studies at a landfill Delaware, Ground Water Contamination, National Academy Press, Washington D.C, 127–138.
- 3. Basberg L., Banks D., Sæther O. M., 1998. Redox processes in groundwater impacted by landfill leachate, Aquatic Geochemistry, 4, 253–272.
- 4. Champ D.R, Gulens J., Jackson R.E., 1979. Oxidation–reduction sequences in groundwater flow systems, Can J Earth Sci., 16, 12–23.
- 5. Cherry J.A. (eds.), 1983. Migration of contaminants in groundwater at a landfill: A case study, Journal of Hydrology, Special Issue, 63, 1/2, 1–197.
- 6. Christensen T.H., Kjeldsen P., 1989. Basic Biochemical Processes in Landfills, Sanitary Landfilling: Process, Technology and Environmental Impact, Academic Press, San Diego, CA, 29–49.
- 7. Christensen T.H., Kjeldsen P., Albrechtsen H.J., Heron G., Nielsen P.H., Bjerg P.L., Holm P.E., 1994. Attenuation of landfill leachate pollutants in aquifers. Crit. Revs. Eniron. Sci. Tech, 24(2), 119–202.
- 8. Christensen J.B., Jensen D.L., Grøn C., Filip Z., Christensen T.H., 1998. Characterisation of the dissolved organic carbon in landfill leachate polluted groundwater, Water Res., 32 (1), 125–135.
- 9. Christensen T.H., Bjerg P.L., Kjeldsen P., 2000a. Natural attenuation: A feasible approach to remediation of groundwater pollution at landfills?, Ground Water Monitoring and Remediation, Vol. 20, (1), 69–77.
- 10. Christensen T.H., Bjerg P.L., Banwart S.A., Jakobsen R., Heron G., Albrechtsen H.J., 2000b. Characterization of redox conditions in groundwater contaminant plumes, Journal of Contaminant Hydrology, 45, 165–241.
- 11. Cozzarelli I.M., Böhlke J.K., Masoner J., Breit G.N., Lorah M.M., Tuttle M.L.W., Jaeschke J.B., 2011. Biogeochemical Evolution of a Landfill Leachate Plume, Norman, Oklahoma, Ground Water, Vol. 49, No. 5, 663–687.
- 12. Dz. U. Nr 143, poz. 896. Rozporządzenia Ministra Środowiska z dnia 23 lipca 2008 r. w sprawie kryteriów i sposobu oceny stanu wód podziemnych.
- 13. Fetter C.W., 1994. Applied hydrogeology, Prentice Hall, Inc A. Simon & Schuster Company Englewood Clifs, New Jersey USA.
- 14. Hayes J.M., 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic processes, 225- 277, W: Valley J.W., Cole D. (red.), Stable isotope geochemistry. Reviews in mineralogy and geochemistry, vol. 43. Mineralogical Society of America, Washington.
- 15. Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B., Zerbe J. 1999. Fizyczno+chemiczne badanie wody i ścieków, Wydawnictwo Arkady, Warszawa (in Polish).
- 16. Koda E., Augustyniak E., Pachuta K., Paprocki P., 1999. Ocena oddziaływania na środowisko nieczynnego wysypiska odpadów stałych w Otwocku, woj. mazowieckie, Arch. MPO, Warszawa (in Polish).
- 17. Macioszczyk A., Jeż L., 1995. Chlorki czułym wskaźnikiem zanieczyszczeń antropogenicznych wód podziemnych, Mat. VI Symp. ,,Współczesne problemy hydrogeologii”, Kraków-Krynica, 259– 267 (in Polish).
- 18. Małecki J.J. (eds.), 2006. Wyznaczanie parametrów migracji zanieczyszczeń w ośrodku porowatym dla potrzeb badań hydrogeologicznych i ochrony środowiska – poradnik metodyczny, WG UW, MŚ, Warszawa (in Polish).
- 19. Manning D., 2001. Calcite precipitation in landfills: an essential product of waste stabilization, Mineralogical Magazine, 65, 5, 603–610.
- 20. Pedersen J.K., Bjerg P.L., Christensen T.H., 1991. Correlation of nitrate profiles with groundwater and sediment characteristics in a shallow sandy aquifer, J. Hydrol., 124, 263–277.
- 21. Porowska D., Gruszczyński T., 2006. Zmienność składu fazy gazowej składowiska odpadów komunalnych w Otwocku, Przegl. Geol., vol. 54, nr 11, 996–1001 (in Polish).
- 22. Porowska D., Gruszczyński T., 2013. Czynniki warunkujące zmienność składu fazy gazowej składowiska odpadów komunalnych w Otwocku, Biuletyn PIG, z. XVI/2, nr 456, 457–464 (in Polish).
- 23. Porowska D., 2010. Zastosowanie wskaźników nasycenia SI do wyznaczenia strefy zanieczyszczenia wód podziemnych wokół składowiska odpadów, W: Stan i antropogeniczne zmiany jakości wód w Polsce, Wyd. Uniwersytetu Łódzkiego, vol. 6, 109–117 (in Polish).
- 24. Porowska D., Związki siarki w fazie gazowej oraz w wodach podziemnych wokół zrekultywowanego składowiska odpadów komunalnych, Przegl. Geol., (in Polish) in press.
- 25. Rose S., Long A., 1988. Monitoring Dissolved Oxygen in Ground Water: Some Basic Considerations, Groundwater Monitoring & Remediation, Vol. 8, Issue 1, 93–97.
- 26. Tchobanoglous G., Theisen H., Vigil S.A., 1993. Integrated solid waste management, New York, McGraw-Hill International.
- 27. Tiedje J.M, Sexstone A.J., Myrold D.D, Robinson J.A., 1982. Denitrification: ecological niches, competition and survival, Antonie Van Leeuwenhoek, 48 (6), 569–583.
- 28. Van Breukelen B.M, 2003. Natural Attenuation of Landfill Leachate: a Combined Biogeochemical Processes Analysis and Microbial Ecology Approach, Academisch Proefschrift, Amsterdam.
- 29. Van Breukelen B.M., Röling W.F.M., Groen J., Griffioen J., Van Verseveld H.W., 2003. Biogeochemistry and isotope geochemistry of a landfill leachate plume, Journal of Contaminant Hydrology, 65, 245–268.
- 30. Weight W.D., Sonderegger J.L. 2000. Manual of Applied Field Hydrogeology, McGraw-Hill, Printed and bound by RR Donnelly & Sons Company.
- 31. Witczak S., Kania J., Kmiecik E., 2013. Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania, IOŚ, Warszawa (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38f834d9-a7b1-405a-9ea1-c5667ad61ff4