PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microhardness and Elastic Properties Evaluation of WC-TiC Coatings Obtained by Arc Spraying Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fulfilling the basic role of hard thermal sprayied coatings is closely related to the value of its microhardness. The quality of such a layer depends on several variables, the main categories being: spray method (flame spray, electric arc, plasma spray, cold spray, etc.), spray parameters (spray distance, voltage and intensity, working atmosphere, direction of the spray jet, etc.) and the materials used (chemical composition of the coating materials, quality and texture of the substrate). In this study, the microhardness, elastic properties and cohesion of a coating made of hard cored wire (Praxair - Tafa) by electric arc spraying process on a low alloy steel substrate, were analyzed. The cored wire has as main hard elements WC (about 26%) and TiC (about 6%), the rest of the chemical elements present being: Cr (14%), Ni (4.5%), B (1.87%), Si (1.25%) and the Fe balance. The micro-hardness was evaluated onto the surface of the coating, previously prepared by grinding to reduce the as-coated roughness. The method based on recording the forcess generated during the indentation with simultaneous measurement of the load - depth curve (with UMT 2M-CETR microtribometer) were used for the microhardness evaluation. In order to analyse the cohesion of the coated layer, scratch tests with progressive loading (10N, 15N and 20N) were performed on the same microtribometer. Tests have shown that the metal matrix uniformly includes the hard particles arised from the core of the wire, and at the microstructural level, the microhardness varies significantly, depending on the hardness of the particles on which the indentor tip applies the loading forces. However, the overall behavior of the coatings thus realized is a satisfactory one, being, as a general behavior, in the average required by the applications of such a layer.
Twórcy
autor
  • Gheorghe Asachi Technical University of Iasi, Department of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania
  • Gheorghe Asachi Technical University of Iasi, Department of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania
autor
  • Gheorghe Asachi Technical University of Iasi, Department of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania
  • Gheorghe Asachi Technical University of Iasi, Department of Mechanical Engineering, Blvd. Mangeron, No. 61, 700050, Iasi, Romania
  • Gheorghe Asachi Technical University of Iasi, Department of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania
Bibliografia
  • [1] A. Tufescu, S. Cretu, M.R. Balan, The role of roughness amplitude on depth distribution of contact stresses. IOP Conference Series: Materials Science and Engineering 147, 1 (2016). Article numer 012012.
  • [2] P. Avram, M.S. Imbrea, B. Istrate, S.I. Strugaru, M. Benchea, C. Munteanu, Indian Journal of Engineering and Materials Sciences 21 (3), 315 (2014).
  • [3] D. Chicet, A. Tufescu, C. Paulin, M. Panturu, C. Munteanu, The Simulation of Point Contact Stress State for APS Coatings. IOP Conference Series: Materials Science and Engineering 209 (1), (2017). Art. number 012044.
  • [4] J.R. Davis (Ed), Handbook of thermal spray technology, ASM International, Materials Park, OH, USA, 2004.
  • [5] M. Panturu, D. Chicet, S. Lupescu, B. Istrate, C. Munteanu, Acta Technica Napocensis Series - Applied Mathematics Mechanics and Engineering 61, 137 (2018).
  • [6] S. Lupescu, C. Munteanu, A. Tufescu, B. Istrate, N. Basescu, Contact stress simulation problem in case of the Mg alloys. IOP Conference Series: Materials Science and Engineering 997, 1, (2020). Article number 012024.
  • [7] L. Pawlowski (Ed.), The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons Ltd, New York (1995).
  • [8] C. Paulin, D.L. Chicet, B. Istrate, M. Panturu, C. Munteanu, IOP Conference Series: Materials Science and Engineering 147, 012034 (2016).
  • [9] W. Tillmann, L. Hagen, D.Stangier, Iris-Aya Laemmerhirt, D. Biermann, P.Kersting, E.Krebs, Wear behavior of bio-inspired and technologically structured HVOF sprayed NiCrBSiFe coatings. Surface & Coatings Technology 280, 16-26 (2015).
  • [10] S. L.Toma, et al., Hard Alloys with High Content of WC and TiC- Deposited by Arc Spraying Process, in Welding - Modern Topics, S. C. A. Alfaro, W. Borek, B. Tomiczek (eds.), IntechOpen, London (2020). DOI: https://doi.org/10.5772/intechopen.94605
  • [11] V. Goanta, C. Munteanu, S. Müftü, B. Istrate, P. Schwartz, S. Boese, G. Ferguson, C.I. Moraras, Evaluation of the Fatigue Behaviour and Failure Mechanisms of 52100 Steel Coated with WIP-C1 (Ni/CrC) by Cold Spray. Materials 15, 3609 (2022). DOI: https://doi.org/10.3390/ma15103609
  • [12] C.C.Paleu, C. Munteanu, B. Istrate, S. Bhaumik, P. Vizureanu, M.S. Bălţatu, V. Paleu, Microstructural Analysis and Tribological Behavior of AMDRY 1371 (Mo-NiCrFeBSiC) Atmospheric Plasma Spray Deposited thin Coatings. Coatings 10 (12), 1186 (2020).
  • [13] P. Sheppard, H. Koiprasert, Effect of W dissolution in NiCrBSi-WC and NiBSi-WC arc sprayed coatings on wear behaviors. Wear 317, 194-200 (2014).
  • [14] B. Wielage, H. Pokhmurska, M. Student, V. Gvozdeckii, T. Stupnyckyj, V. Pokhmurskii, Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures. Surface & Coatings Technology 220, 27-35 (2013) .
  • [15] W. Tillmann, L. Hagen, D. Kokalj, Embedment of eutectic tungsten carbides in arc sprayed steel coatings. Surface & Coatings Technology 331, 153-162 (2017).
  • [16] W. Tillmann, D. Stangier, Le. Hagen, P. Schröder, M. Krabiell, Influence of the WC grain size on the properties of PVD/HVOF duplex coatings. Surface & Coatings Technology 328, 326-334 (2017).
  • [17] A.S. Maxwell, Review of Test Methods for Coating Adhesion. 2001, NPL Report MATC (A) 49, National Physical Laboratory, Teddington, Middlesex, UK, ISSN 1473-2734.
  • [18] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 1, 3-20 (2004).
  • [19] Hang Yin, Sheng Wang, Bing Guo, Qingliang Zhao, Effects of scratch depth on material-removal mechanism of yttrium aluminium garnet ceramic. Ceramics International 48, 27479-27485 (2022).
  • [20] Ming Liu, Fuwen Yan, Scratch-induced deformation and damage behavior of doped diamond-like carbon films under progressive normal load of Vickers indenter. Thin Solid Films 756, 139351 (2022).
  • [21] P. Suya Prem Anand, N. Arunachalam, L. Vijayaraghavan, Evaluation of grinding strategy for bioceramic material through a single grit scratch test using force and acoustic emission signals. Journal of Manufacturing Processes 37, 457-469 (2019).
  • [22] R. Ctvrtlík, J. Cech, J. Tomastík, L. Vaclavek, P. Hausild, Plastic instabilities explored via acoustic emission during spherical nanoindentation. Materials Science & Engineering A 841. 143019 (2022).
  • [23] R.K. Choudhary, P. Mishra, Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings. JMEPEG 25 (6), 2454-2461 (2016).
  • [24] Antolino Gallego, Jose´ F. Gil, Juan M. Vico, Jose´ E. Ruzzante, Rosa Piotrkowski, Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis. Scripta Materialia 52, 1069-1074 (2005).
  • [25] G. Antolino, P. Rosa, R. José, C. Amado, G.U. Teresa, C. Enrique, Acoustic emission technique to assess microfractures of metalic coatings with scratch-tests (2002). http://www.sea-acustica.es/PACS.
  • [26] P. Boháč, J. Tomáštík, R. Čtvrtlík, M. Dráb, V. Koula, K. Cvrk, l. Jastrabík, Acoustic Emission Generated During Scratch Test of Various Thin Films, 11th European Conference on Non-Destructive Testing (ECNDT 2014), Prague 2014, Oct 6-11 (ECNDT 2014) no 16635. http://www.ndt.net/app.ECNDT2014
  • [27] L. Václavek, J. Tomáštík, H. Chmelícková, R. Ctvrtlík, Benefits of use of acoustic emission in scratch testing. Acta Polytechnica 27 (0), 121-125 (2020).
  • [28] J. Tomastik, R. Ctvrtlik, P. Bohac, M. Drab, V. Koula, K. Cvrk, L. Jastrabik, Utilization of Acoustic Emission in Scratch Test Evaluation. Key Engineering Materials 662, 119-122 (2015).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38f6a022-8038-479f-9320-4a1d158a62a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.