PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Silver Coated Yarn Distribution on Electrical and Shielding Properties of Flax Woven Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ rozkładu przędz srebrzonych na właściwości elektryczne i ekranujące tkanin lnianych
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to investigate the influence of silver coated yarns incorporated into fabric on the electrical and shielding properties of textile materials designed to ensure protection against the risk of harmful electromagnetic fields as well as thermophysiological comfort in a warm climate. The wearing comfort of conductive textiles is poor due to the chemical nature of synthetic fibres and coatings usually used in their production. In order to solve the problem, natural flax fibres that have good antistatic, hygienic and wearing comfort properties were used as a base for electroconductive textiles. This paper presents the research of these newly developed conductive textile materials. The content of the experimental investigations consisted of determination of the electrical conductivity, electromagnetic interference (EMI) shielding of the materials designed, and an analysis of measurement results. From the results obtained, it can be concluded that not only the amount of conductive additive (in this case –silver) but also the distribution of conductive yarns in woven flax fabric influence the electrical properties, such as electromagnetic wave shielding and electrical conductivity. Correlations between the shielding effectiveness and electrostatic properties are also discussed.
PL
Celem badań było określenie wpływu przędz srebrzonych wprowadzonych do tkaniny na jej właściwości elektryczne i ekranujące. Materiały projektowano dla zapewnienia ochrony przed szkodliwym działaniem fal elektromagnetycznych, a jednocześnie zapewniających termo-fizjologiczny komfort w ciepłym klimacie. Komfort noszenia ubrań wykonanych z włókien syntetycznych jest niski i dlatego do badanych tkanin wybrano włókna lniane, posiadające dobre właściwości antystatyczne i higieniczne zapewniające dobry komfort noszenia. W strukturę lnianych tkanin zostały wprowadzone srebrzone przędze w różnej konfiguracji i gęstości wprowadzenia. Badano czas półzaniku przyłożonego napięcia oraz stopień ekranowania przed falami elektromagnetycznymi emitowanymi przez blisko położone źródło fal elektromagnetycznych. Stwierdzono korelację pomiędzy właściwościami elektrostatycznymi a zdolnością ekranowania. Analizując wyniki stwierdzono, że zdolność ekranowania zależy nie tylko od ilości wprowadzonych przędz przewodzących, ale również od ich konfiguracji w tkaninie.
Rocznik
Strony
84--90
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., tab.
Twórcy
  • Lithuania, Kaunas, Textile Institute, SRI Center for Physical Sciences and Technology
  • Lithuania, Kaunas, Textile Institute, SRI Center for Physical Sciences and Technology
  • Lithuania, Kaunas, Textile Institute, SRI Center for Physical Sciences and Technology
autor
  • Lithuania, Kaunas, Textile Institute, SRI Center for Physical Sciences and Technology
autor
  • Lithuania, Kaunas, Textile Institute, SRI Center for Physical Sciences and Technology
Bibliografia
  • 1. Chen MY, Wu H, Zha AX. Electromagnetic Shielding Effectiveness of Fabrics with Metalized Polyester Filaments. Textil Res J 2007; 77, 4: 242-246
  • 2. Su ChI, Chern JT. Effect of Stainless Steel-Containing Fabrics on Electromagnetic Shielding Effectiveness. Textile Research Journal 2004; 74, 1: 51-54.
  • 3. Cheng KB, Cheng TW, Nadaraj RN, Giri Dev VR, Neelakand R. Electromagnetic Shielding Effectiveness of the Twill Copper Woven Fabrics. Journal of Reinforced Plastics and Composites 2006; 25, 7: 699–709.
  • 4. Nurmi S, Lintukorpi A, Saamanen A, Luoma T, Soinnen M, Suikkanen VP. Human, Protective Cloths and Surgical Drapes as a Source of Particles in an Operating Theatre. Autex Research Journal 2003; 3: 394-399.
  • 5. Roh JS, Chi YS, Kang TJ, Nam SW. Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics. Textile Research Journal 2008; 78, 9: 825-835.
  • 6. Lemaire P. Estimation of Static Dissipation Through Corona Discharges in Protective Garments Using Core Conductive Fibres. In: Electrostatics 2005 Conference, 2005; 15-17.
  • 7. Varnaitė S, Katunskis J. Influence of Washing on Electric Charge Decay of Fabrics with Conductive Yarns. Fibres & Textiles in Eastern Europe 2009; 17, 5: 69-75.
  • 8. Holme I, McIntyre JE, Shen ZJ. Electrostatic Charging of Textiles. Textile Progress 1998; 28, 1: 1-90.
  • 9. Wieckowski TW, Janukiewicz JM. Methods for Evaluating the Shielding Effectiveness of Textiles. Fibres & Textiles in Eastern Europe 2006; 14, 5: 18-22.
  • 10. Avloni J, Ouyang M, Florio L, Henn AR, Sparavigna A. Shielding Effectiveness Evaluation of Metalized and Polypyrrole- Coated Fabrics. Journal of Thermoplastic Composite Materials 2007; 20, 3: 241-254.
  • 11. Military Textiles. Ed. Wiluz E. Woodhead Publishing in Textiles, 2008: 384.
  • 12. Xue P, Tao XM, Kwok KWY, Leung MY, Yu TX. Electromechanical Behaviour of Fibres Coated with an Electrically Conductive Polymer. Textile Research Journal 2004; 74, 10: 929-936.
  • 13. Kaynak A. Characterization of conducting polymer coated fabrics at microwave frequencies. International Journal of Clothing Science and Technology 2009; 21, 2-3: 117-126.
  • 14. Intelegent Textiles and Clothing. Ed. Mattila HR. Woodhead Publishing in Textiles, 2006: 528.
  • 15. Textiles for Protection, edited by Scott RA. Woodhead Publishing in Textiles, 2005: 784.
  • 16. Brzeziński S, Rybicki T, Karbownik I, Malinowska G, Rybicki E, Szugajew L, Lao M, Śledzińska K. Textile Multi-layer Systems for Protection against Electromagnetic Radiation. Fibres & Textiles in Eastern Europe 2009; 17, 2: 66-71.
  • 17. Zamanian A, Hardiman C. Electromagnetic radiation and Human Health: A Review of Sources and Effects. High Frequency Electronics in Summit Technical Media 2005: 16-26.
  • 18. Brzezinski S, Rybicki T, Malinowska G, Karbownik I, Rybicki E, Szugajew L. Effectiveness of Shielding Electromagnetic Radiation, and Assumptions for Designing the Multi-layer Structures of Textile Shielding Materials. Fibres & Textiles in Eastern Europe 2009; 17, 1: 60-65.
  • 19. Koprowska J, Pietranik M, Stawski W. New Type of Textiles with Shielding Properties. Fibres & Textiles in Eastern Europe 2004; 12, 3: 39-42.
  • 20. ASTM D4935-10 Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials.
  • 21. Wieckowski TW, Janukiewicz JM. Methods for Evaluating the Shielding Effectiveness of Textiles. Fibres & Textiles in Eastern Europe 2006; 14, 5: 18-22.
  • 22. Wilson PF. Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials: Part I: – Far-Field Source Simulation. IEEE Transactions on Electromagnetic Compatibility 1988; 30, 3: 239-250.
  • 23. Wilson PF. Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials: Part II: – Near-Field Source Simulation. IEEE Transactions on Electromagnetic Compatibility 1988; 30, 3: 251-259.
  • 24. Zimniewska M, Michalak M, Krucinska I, Wiecek B. Electrostatic and Thermal Properties of the Surface of Clothing Made from Flax and Polyester Fibres. Fibres & Textiles in Eastern Europe 2003; 11, 2: 55-57.
  • 25. EN ISO 5084:1996. Textiles – Determination of thickness of textiles and textile products.
  • 26. EN ISO 1833-1:2010. Textiles – Quantitative chemical analysis – Part 1: General principles of testing.
  • 27. EN 1149-3:2004. Protective clothing – Electrostatic properties – Part 3: Test methods for measurement of charge decay.
  • 28. Varnaitė S. The Use of Conductive Yarns in Woven Fabric for Protection Against Electrostatic Field. Materials Science (Medžiagotyra) 2010; 16, 2: 133-137.
  • 29. EN 1149-1:2006. Protective clothing – Electrostatic properties – Part 1: Test method for measurement of surface resistivity.
  • 30. Evaluation of Excisting Test Methods for ESD Garments, [looked: 2007 05 25]. Access in internet: http://estat.vtt.fi/publications/ vtt_btuo45-041224.pdf.]
  • 31. Pinar A, Michalak L. Influence of Structural Parameters of Wale-Knitted Fabrics on their Electrostatic Properties Fibres & Textiles in Eastern Europe 2006; 14(5): 69-74.
  • 32. Vogel Ch, Beier H, Erth H. Research and Development in the Field of Special Protective Clothing; Requirements for Selected Methods and Products. Fibres & Textiles in Eastern Europe 2006; 14(5): 29-34.
  • 33. Cieślak M, Wróbel S, Kamińska I, Lao M. Functional Upholstery Materials for Protection Against Electrostatic Risk. Fibres & Textiles in Eastern Europe 2009; 17(4): 52-58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38f3c4fb-5e45-43b5-9ffd-87f3cef5acf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.