PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic characterisation of catalysts for methanol synthesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of activity studies of four catalysts in methanol synthesis have been presented. A standard industrial catalyst TMC-3/1 was compared with two methanol catalysts promoted by the addition of magnesium and one promoted by zirconium. The kinetic analysis of the experimental results shows that the Cu/Zn/Al/Mg/1 catalyst was the least active. Although TMC-3/1 and Cu/Zn/Al/Mg/2 catalysts were characterised by a higher activity, the most active catalyst system was Cu/Zn/Al/Zr. The activity calculated for zirconium doped catalyst under operating conditions was approximately 30% higher that of TMC-3/1catalyst. The experimental data were used to identify the rate equations of two types – one purely empirical power rate equation and the other one - the Vanden Bussche & Froment kinetic model of methanol synthesis. The Cu/ZnO/Al2O3catalyst modified with zirconium has the highest application potential in methanol synthesis.
Rocznik
Strony
497--506
Opis fizyczny
Bibliogr. 23 poz., tab.
Twórcy
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
autor
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
autor
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
autor
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
autor
  • Fertilizer Research Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
  • Fertilizer Research Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
Bibliografia
  • 1. Bandische Anilin und Soda Fabrik, 1923. D.R. Patents 415, 686; 441, 433 and 462, 837.
  • 2. Błasiak E., 1947. Patent PRL 34.000. Chinchen G.C., Denny P.J., Spencer M.S., Whan D.A., 1987. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants. Appl. Catal.,30, 333. DOI: 10.1016/S0166-9834(00)84123-8.
  • 3. Chinchen G.C., Spencer M.S., Waugh K.C., Whan D.A., 1987. Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts. J. Chem. Soc. Faraday Trans.1,83, 2193- 2212. DOI: 10.1039/F19878302193.
  • 4. Gao P., Li F., Zhan H., Zhao N., Xiao F., Wei W., Zhong L., Wang H., Sun Y., 2013. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2hydrogenation to methanol. J. Catal., 298, 51-60. DOI: 10.1016/j.jcat.2012.10.030.
  • 5. Guo X., Mao D., Lu G., Wang S., Wu G., 2011. The influence of La doping on the catalytic behavior of Cu/ ZrO2for methanol synthesis from CO2 hydrogenation. J. Molecular Catal. A: Chem., 345, 60-68. DOI: 10.1016/j.molcata.2011.05.019.
  • 6. Haldor Topsoe A/S, n.d. MK-121 High activity methanol synthesis catalyst [Brochure]. Retrieved 24.02.2013 from: http://www.topsoe.com/business_areas/gasification_based/~/media/PDF%20files/Methanol/Topsoe_methanol_mk%20121.ashx.
  • 7. Kang S.-H., Bae J. W., Sai Prasad P.S., Oh J.-H., Jun K.-W., Song S.-L., Min K.-S., 2009. Influence of Ga addition on the methanol synthesis activity of Cu/ZnO catalyst in the presence and absence of alumina.J. Ind. Eng. Chem., 15, 665–669. DOI: 10.1016/j.jiec.2009.09.041.
  • 8. Kotowski W., 1963. Betriebserfahrungen mit einem Kupferkatalysator bei der Methanolsynthese. Chemische Technik, 15, 204-205 (In German).
  • 9. Kowalik P., Konkol M., Kondracka M., Próchniak W., Bicki R., Wiercich P., 2013. The CuZnZrAl hydroxycarbonates as copper catalyst precursors-Structure, thermal decomposition and reduction studies. Appl. Catal. A: Gen., 452, 139-146. DOI: 10.1016/j.apcata.2012.11.019.
  • 10. Lange J.P., 2001. Methanol synthesis: a short review of technology improvements. Catal. Today, 64, 3–8. DOI: 10.1016/S0920-5861(00)00503-4.
  • 11. Lu-xiang Z., Yongchun Z., Shaoyun C., 2011. Effect of promoter TiO2on the performance of CuO-ZnO-Al2O3 catalyst for CO2 catalytic hydrogenation to methanol. J. Fuel Chem. Technol., 39, 912-927. DOI: 10.1016/S1872-5813(12)60002-4.
  • 12. Lu-xiang Z., Yongchun Z., Shaoyun C., 2012. Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2hydrogenation. Appl. Catal. A: Gen., 415– 416, 118– 123. DOI: 10.1016/j.apcata.2011.12.013.
  • 13. Petera J., Nowicki L., Ledakowicz S., 2013. New numerical algorithm for solving multidimensional heterogeneous model of the fixed bed reactor. Chem. Eng. J., 214, 237-246. DOI: 10.1016/j.cej.2012.10.020.
  • 14. Poels Z.E.K., Brands D.S., 2000. Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction. Appl. Catal. A: Gen.,191, 83–96. DOI: 10.1016/S0926-860X(99)00307-5.
  • 15. Rozovskii A.Ya., 1989. Modern problems in the synthesis of methanol. Russ. Chem. Rev. 58, 41. DOI: 10.1070/RC1989v058n01ABEH003425.
  • 16. Sahibzada M., Metcalfe I.S., Chadwick D., 1998. Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversion. J. Catal., 174, 111-118. DOI: 10.1006/jcat.1998.1964.
  • 17. Sanches S.G., Huertas Flores J., de Avillez R.R., Pais da Silva M.I., 2012. Influence of preparation methods and Zr and Y promoters on Cu/ZnO catalysts used for methanol steam reforming. Int. J. Hydrogen Energy, 37, 6572- 6579. DOI: 10.1016/j.ijhydene.2012.01.033.
  • 18. Shahrokhi M., Baghmisheh G.R., 2005. Modeling, simulation and control of a methanol synthesis fixed-bed reactor. Chem. Eng. Sci., 60, 4275 – 4286. DOI: 10.1016/j.ces.2004.12.051.
  • 19. Skrzypek J., Słoczynski J., Grabowski R., Olszewski P., Kozłowska A., Stoch J., Lachowska M., 2006. Effect of metal oxide additives on the activity and stability Cu/ZnO/ZrO2catalysts in the synthesis of methanol from CO2 and H2. Appl. Catal. A: Gen., 310, 127–137. DOI: 10.1016/j.apcata.2006.05.035.
  • 20. Skrzypek J., Słoczyński J., Ledakowicz S.,1994. Methanol synthesis science and engineering. PWN, Warszawa. Szarawara J., Reychman K., 1980. Model kinetyczny niskociśnieniowej syntezy metanolu. Inż. Chem. Proces. 1, 331-344 (in Polish).
  • 21. Toyir J., Ramirez de la Piscina P., Fierro José Luis G., 2001. Highly effective conversion of CO2to methanol over supported and promoted copper-based catalysts: Influence of support and promoter. Appl. Catal. B: Env., 29, 207–215. DOI: 10.1016/S0926-3373(00)00205-8.
  • 22. Vanden Bussche K.M., Froment G.F.,1996. A Steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J. Catal., 161, 1–10. DOI: 10.1006/jcat.1996.0156.
  • 23. Wang F., Liu Y., Gan Y., Ding W., Fang W., Yang Y., 2013. Study on the modification of Cu-based catalysts with cupric silicate for methanol synthesis from synthesis gas. Fuel Process. Technol., 110, 190-196. DOI: 10.1016/j.fuproc.2012.12.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38f0c7b1-0998-4a9f-ba6e-5ba593e79fba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.