PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In situ TEM observation of reaction of Ti/Al multilayers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ti/Al multilayers of nominal periods λ = 50 nm and λ = 200 nm were deposited using double target magnetron system equipped with rotating substrate holder. The in situ TEM experiments were aimed at explaining DSC measured exothermic effects through phase transformations taking place during heating of the multilayers with small and large period. Thin foils for these examinations were cut with FIB. The performed experiments showed that the as deposited multilayers are characterized by presence of coarse pseudo-columnar crystallites built of alternating hex-Ti and fcc-Al. The intermixed region at the internal interfaces extends up to 10 nm, i.e. the areas filled with mutually alloyed material starts to dominate over those of pure metals for multilayers of λ < 30 nm. The DSC measurements indicated that in both multilayers their reaction are split to two stages, but those in the small period take place at much lower temperature range, than that in the large period one.
Rocznik
Strony
188--198
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Metallurgy and Materials Science PAS, Reymonta 25, 30-059 Krakow, Poland
  • bAGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science PAS, Reymonta 25, 30-059 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science PAS, Reymonta 25, 30-059 Krakow, Poland
autor
  • bAGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
autor
  • bAGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
autor
  • bAGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] T. Namazu, H. Takemoto, H. Fujita, Y. Nagai, S. Inoue, Self- propagating explosive reactions in nanostructured Al/Ni multilayer films as a localized heat process technique for MEMS, in: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Turkey, Istanbul, (2006) 286–289.
  • [2] A. Gavens, D. Van Heerden, A. Mann, M. Reiss, T. Weihs, Effect of intermixing on self-propagating exothermic reactions in Al/Ni nano-laminate foils, Journal of Applied Physics 87 (2000) 1255.
  • [3] X. Qiu, J. Wang, Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils, Scripta Materialia 56 (2007) 1055–1058.
  • [4] A.S. Ramos, M.T. Vieira, J. Morgiel, J. Grzonka, S. Simőes, M.F. Vieira, Production of intermetallic compounds from Ti/Al and Ni/Al multilayer thin films – a comparative study, Journal of Alloys and Compounds 484 (2009) 335–340.
  • [5] K.W. Marszalek, J. Stepien, R. Mania, Computer controlled system for the magnetron sputtering deposition of the metallic multilayers, International Journal of Electronics and Telecommunications 60 (4) (2014) 291–298.
  • [6] A. Edelstein, R. Everett, G. Richardson, S. Qadri, E. Altman, J. Foley, J.H. Perepezko, Intermetallic phase formation during annealing of Al/Ni multilayers, Journal of Applied Physics 76 (12) (1994) 7850.
  • [7] D. Shechtman, D. Van Heerden, D. Josell, FCC titanium in Ti- Al multilayers, Materials Letters 20 (1994) 329–334.
  • [8] R. Banerjee, X.D. Zhang, S.A. Dregia, H.L. Fraser, Phase stability in Al/Ti multilayers, Acta Materialia 47 (4) (1999) 1153–1161.
  • [9] Q. Wei, A. Misra, TEM study of microstructure and crystallographic orientation relationship in V/Ag multilayers, Acta Materialia 58 (2010) 4871–4882.
  • [10] A.S. Ramos, R. Calinas, M.T. Vieira, The formation of (-TiAl from Ti/Al multilayers with different periods, Surface and Coatings Technology 200 (2006) 6196–6200.
  • [11] A. Genc, Phase Stability in Metallic Multilayers, (Ph. D thesis), Ohio State University, 2008.
  • [12] J.G. Luo, V.L. Acoff, Interfacial reactions of titanium and aluminium during diffusion welding, Welding Research Supplement 2000 (September) (2000) 239–243.
  • [13] R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, PWS-KENT, Boston, MA, 1992, pp. 360–401.
  • [14] Y. Mishin, C. Herzig, Diffusion in the Ti–Al system, Acta Materialia 48 (2000) 589–623.
  • [15] J. Rusing, C. Herzig, Concentration and temperature- dependence of titanium self-diffusion and interdiffusion in the intermetallic phase Ti3Al, Intermetallics 4 (8) (1996) 647–657.
  • [16] C. Herzig, T. Przeorski, Y. Mishin, Self-diffusion in (-TiAl: an experimental study and atomistic calculations, Intermetallics 7 (1999) 389–404.
  • [17] A.S. Ramos, M.T. Vieira, Kinetics of the thin films transformation Ti/Al multilayer ! (g-TiAl), Surface and Coatings Technology 200 (2005) 326–329.
  • [18] E. Illekova, J.C. Gachon, A. Rogachev, H. Grigoryan, J.C. Schuster, A. Nosyrev, P. Tsygankov, Kinetics of intermetallic phase formation in the Ti/Al multilayers, Thermochimica Acta 469 (2008) 77–85.
  • [19] G. Lucadamo, K. Barmak, C. Lavoie, C. Cabral Jr., C. Michaelsen, Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films, Journal of Applied Physics 91 (2002) 9575–9583.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e8e9a7-e9be-4821-b65b-6027973c0e0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.