PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exhaled breath analysis by resistive gas sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Breath analysis has attracted human beings for centuries. It was one of the simplest methods to detect various diseases by using human smell sense only. Advances in technology enable to use more reliable and standardized methods, based on different gas sensing systems. Breath analysis requires the detection of volatile organic compounds (VOCs) of the concentrations below individual ppm (parts per million). Therefore, advanced detection methods have been proposed. Some of these methods use expensive and bulky equipment (e.g. optical sensors, mass spectrometry - MS), and require time-consuming analysis. Less accurate, but much cheaper, are resistive gas sensors. These sensors use porous materials and adsorption-desorption processes, determining their physical parameters. We consider the problems of applying resistive gas sensors to breath analysis. Recent advances were underlined, showing that these economical gas sensor scan be efficiently employed to analyse breath samples. General problems of applying resistive gas sensors are considered and illustrated with examples, predominantly related to commercial sensors and their long-term performance. A setup for collection of breath samples is considered and presented to point out the crucial parts and problematic issues.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Mikolajczyk, J., Bielecki, Z., Stacewicz, T., Smulko, J., Wojtas, J., Szabra, D., Magryta, P. (2016). Detection of gaseous compounds with different techniques. Metrol. Meas. Syst., 23(2), 205-224.
  • [2] Korotcenkov, G., Cho, B.K. (2013). Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sensors and Actuators, B: Chemical.
  • [3] Ederth, J., Smulko, J.M., Kish, L.B., Heszler, P., Granqvist, C.G. (2006). Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films. Sensors and Actuators B-Chemical, 113(1), 310-315.
  • [4] Korotcenkov, G., Cho, B.K. (2014). Bulk doping influence on the response of conductometric SnO2 gas sensors: Understanding through cathodoluminescence study. Sensors and Actuators, B: Chemical.
  • [5] Dziedzic, A., Kolek, A., Licznerski, B. (1999). Noise and nonlinearity of gas sensors-preliminary results. Proc. 22nd Int. Spring Seminar, 99-104.
  • [6] Kish, L.B., Vajtai, R., Granqvist, C.G. (2000). Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues. Sensors and Actuators B-Chemical, 71(1-2), 55-59.
  • [7] Gomri, S., Contaret, T., Seguin, J.L. (2018). A New Gases Identifying Method with MOX Gas Sensors Using Noise Spectroscopy. IEEE Sensors Journal, 18(16).
  • [8] Lentka, Ł., Smulko, J.M., Ionescu, R., Granqvist, C.G., Kish, L.B. (2015). Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst., 22(3), 341-350.
  • [9] Smulko, J.M., Kish, L.B. (2004). High-order statistics for fluctuation-enhanced gas sensing. Sensors and Materials, 16(6).
  • [10] Balandin, A.A. (2013). Low-frequency 1/f noise in graphene devices. Nature Nanotechnology, 8(8), 549-555.
  • [11] Kotarski, M., Smulko, J. (2009). Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst., 16(3).
  • [12] Kwiatkowski, A., Chludziński, T., Smulko, J. (2018). Portable exhaled breath analyzer employing fluctuation-enhanced gas sensing method in resistive gas sensors. Metrol. Meas. Syst., 25(3), 551-560.
  • [13] Mor, G.K., Varghese, O.K., Paulose, M., Grimes, C.A. (2003). A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor. Sensor Letters, 1(1), 42-46.
  • [14] Kai Zhang, L.Z. (2014). Volatile Organic Compounds as Novel Markers for the Detection of Bacterial Infections. Clinical Microbiology: Open Access, 03(03).
  • [15] Ionescu, R., Broza, Y., Shaltieli, H., Sadeh, D., Zilberman, Y., Feng, X., Haick, H. (2011). Detection of Multiple Sclerosis from Exhaled Breath Using Bilayers of Polycyclic Aromatic Hydrocarbons and Single-Wall Carbon Nanotubes. ACS Chemical Neuroscience, 2(12), 687-693.
  • [16] Ulanowska, A., Ligor, T., Michel, M., Buszewski, B. (2010). Hyphenated and unconventional methods for searching volatile cancer biomarkers. Ecol. Chem. Eng, 17(1), 9-23.
  • [17] Phillips, M., Altorki, N., Austin, J.H.M., Cameron, R.B., Cataneo, R.N., Kloss, R., Wai, J. (2008). Detection of lung cancer using weighted digital analysis of breath biomarkers. Clinica Chimica Acta, 393(2), 76-84.
  • [18] Nakhleh, M.K., Amal, H., Jeries, R., Broza, Y.Y., Aboud, M., Gharra, A., Haick, H. (2017). Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano, 11(1), 112-125.
  • [19] Nandy, T., Coutu, R. A., Ababei, C. (2018). Carbon monoxide sensing technologies for next-generation cyber-physical systems. Sensors, Switzerland, 18(10).
  • [20] Zhang, Y., Chu, W., Foroushani, A.D., Wang, H., Li, D., Liu, J., Yang, W. (2014). New gold nanostructures for sensor applications: A review. Materials, 7(7), 5169-5201.
  • [21] Saha, K., Agasti, S.S., Kim, C., Li, X., Rotello, V.M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112(5), 2739-2779.
  • [22] Lentka, Ł., Smulko, J. (2019). Methods of trend removal in electrochemical noise data - Overview. Measurement: Journal of the International Measurement Confederation, 131, 569-581.
  • [23] Byun, H.-G., Yu, J.-B., Huh, J.-S., Lim, J.-O. (2014). Exhaled Breath Analysis System based on Electronic Nose Techniques Applicable to Lung Diseases. Hanyang Medical Reviews, 34(3), 125.
  • [24] Duda, R., Hart, P., Stork, D. (2012). Pattern classification. John Wiley & Sons.
  • [25] Marco, S., Gutierrez-Galvez, A. (2012). Signal and data processing for machine olfaction and chemical sensing: A review. IEEE Sensors Journal, 12(11), 3189-3214.
Uwagi
EN
1. This work was financially supported in part by Statutory Funds (Działalność Statutowa), Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology and by TROPSENSE under the H2020-MSCA-RISE-2014 project, grant agreement number: 645758.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e8e411-65b7-42b1-a9f4-75c664273aef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.