Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electrical discharge drilling (EDD), a non-contact manufacturing technology that brings the potential to fabricate microholes at low cost and relatively high efficiency, has aroused extensive attention at home and abroad. However, the surface/subsurface defects and forming accuracy inherited from the EDD process can significantly impede the mechanical properties and weaken the usage performance of as-micro holes parts and components, probably challenging this process’s reliability and reproducibility. The advancement of simulated technique and characterization detection currently opens up a more a more intuitive and deeper research of micro holes machined by the EDD process. Given that, the paper systematically states the material removal mechanism, debris escaping path, surface/subsurface defects formation, mitigation strategies and improved measures of micro holes fabricated by the EDD process. Consequently, based on current limitations and challenges, hybrid process and theoretical breakthrough play a significant role in future research on the microhole fabricated by the EDD process.
Czasopismo
Rocznik
Tom
Strony
art. no. e143, 2024
Opis fizyczny
Bibliogr. 171 poz., fot., rys., wykr.
Twórcy
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, People’s Republic of China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, People’s Republic of China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, People’s Republic of China
autor
- Process Research Institute, Shenyang Aircraft Corporation, Shenyang 110000, People’s Republic of China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, People’s Republic of China
autor
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People’s Republic of China
- State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, People’s Republic of China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, People’s Republic of China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, People’s Republic of China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110057, People’s Republic of China
Bibliografia
- 1. Wang W, Li L, Liu Z, Liu X, Bai X, Zang M, Zhang H. Research progress on improve quality of micro-hole processedby electrical discharge machining. Ordnance Mater Sci Eng.2023;46:140–6.
- 2. Zhang Y. Fundamental research on electrochemical and discharge machining for micro hole. Nanjing: Nanjing Universityof Aeronautics and Astronautics; 2018.
- 3. Ying R, Zeng L, Gu D. Review of micro-hole machining technology. Mach Tool Hydraul. 2008;36:144–7.
- 4. Chen M, Zheng X, Dong D, Huang L, Wang X. Investigation of tool wear mechanism and tool geometry optimization in drilling of PCB fixture hole. Circuit World. 2013;39:195–203.
- 5. Li C. Characteristics study of deep hole drilling tool system. X’ian: X’ian University of Technology; 2008.
- 6. Ma ZL, Wang QH, Liang YD, Cui ZJ, Meng FW, Chen LY.The mechanism and machinability of laser-assisted machining zirconia ceramics. Ceram Int. 2023;49(11):16971–84.
- 7. Lou ZZ, Yan YD, Wang JQ, Zhang AX, Cui HL, Li C, GengYQ. Exploring the structural color of micro-nano composite gratings with FDTD simulation and experimental validation. Opt Express. 2024;32(2):2432–51.
- 8. Ma ZL, Wang QH, Chen H, Chen LY, Sheng Q, Wang ZX, YuTB. A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic. J Mater Process Technol. 2022;302: 117492.
- 9. Xiang DD, Liu Y, Yu T, Wang D, Leng X, Wang K, Liu L, Pan J, Yao S, Chen Z. Review on wear resistance of laser cladding high-entropy alloy coatings. J Mater Process Technol.2024;28:911–34.
- 10. Lohrengel MM, Rosenkranz C. Micro-electrochemical surface and product investigations during electrochemical machining (ECM) in NaNO 3 . Corros Sci. 2005;47:785–94.
- 11. Kunieda M, Mizugai K, Watanabe S, Shibuya N, Iwamoto N. Electrochemical micromachining using flat electrolyte jet. CIRP Ann Manuf Technol. 2011;60:251–4.
- 12. Jia J, Qu N, Fang X, Zeng Y. Investigation on electro stream drilling of micro-hole. Electromach Mould. 2011;2:129–32.
- 13. Gong S, Sun Y. Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining. J Manuf Process. 2022;79:126–41.
- 14. Philip JT, Mathew J, Kuriachen BB. Transition from EDM to PMEDM-impact of suspended particulates in the dielectricon Ti6Al4V and other distinct material surfaces: a review. J Manuf Process. 2021;64:1105–42.
- 15. Yao S, Jin LY, Gong YD, Wen XL, Yin GQ, Wen Q, Tang BJ. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J Manuf Process. 2022;73:799–814.
- 16. Rahim MZ, Li G, Ding S, Mo J, Brandt M. Electrical discharge grinding versus abrasive grinding in polycrystalline diamond machining-tool quality and performance analysis. Int J Adv Manuf Technol. 2016;85:263–77.
- 17. Zhang Y, Xu Z, Zhu Y, Zhu D. Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling. J Mater Process Technol. 2016;231:38–49.
- 18. Li Z, Bai J, Cao Y, Wang Y, Zhu G. Fabrication of microelectrode with large aspect ratio and precision machining of micro-holearray by micro-EDM. J Mater Process Technol. 2019;268:70–9.
- 19. Liew PJ, Yan J, Kuriyagawa T. Fabrication of deep micro-holesin reaction-bonded SIC by ultrasonic cavitation assisted Micro-EDM. Int J Mach Tool Manufact. 2014;76:13–20.
- 20. Gong S, Sun Y, Jin L, Su Z. Experimental study on fabricating micro-holes in DD5 single-crystal nickel-based superalloy using electrical discharge drilling. J Archiv Civ Mech Eng. 2020;20:87.
- 21. Sun Y, Gong Y, Wen X, Xin B. Evaluation of dimensional accuracy and surface integrity of cylindrical array microelectrodes and cylindrical array micro holes machined by EDM. J Archiv Civ Mech Eng. 2022;22:46.
- 22. Kumar R, Kumar A, Singh I. Electric discharge drilling of micro holes in CFRP laminates. J Mater Process Technol. 2018;259:150–8.
- 23. Li MH. Theoretical foundation of electrical discharge machining. Beijing: National Defense of Industry Press; 1989. p. 26–7.
- 24. Huang S, Gao S, Huang C, Huang H. Nanoscale removal mechanisms in abrasive machining of brittle solids. Diam Abras Eng. 2022;42:257–67.
- 25. Qu SS, Yao P, Gong YD, Dk Chu, Yang YY, Li CW. Environmentally friendly grinding of C/SiCs using carbon nano-fluid minimum quantity lubrication technology. J Clean Prod. 2022;366:132898.
- 26. Piao YC, Li C, Hu YX, Cui HL, Luo XL, Geng YQ, Zhang FH. Nanoindentation induced anisotropy of deformation and damage behaviors of Mg F2 crystals. J Market Res. 2024;28:4615–25.
- 27. Li C, Hu YX, Wei ZZ, Wu CJ, Peng YF, Zhang FH, Geng YQ. Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding. Int J Extreme Manuf. 2024;6(2): 025103.
- 28. Ma L, Cai C, Tan Y, Gong Y, Zhu L. Theoretical model of trans-verse and longitudinal surface roughness and study on brittle-ductile transition mechanism for turning Fluorophlogopite ceramic. Int J Mech Sci. 2019;150:715–26.
- 29. Shao W, Zhang T. Process parameters optimization of high-speedmilling 7075 aluminum alloy with nano-diamond coated tool. Diam Abras Eng. 2022;42(4):473–80.
- 30. Zhang Y, Xu Z, Zhu Y, Zhu D. Machining of a film-cooling hole in a single-crystal superalloy by high-speed electrochemical discharge drilling. Chin J Aeronaut. 2016;29(2):560–70.
- 31. Zhang Y, Xie B. Investigation on hole diameter non-uniformity of hole arrays by ultrasonic vibration-assisted EDM. Int J Adv Manuf Technol. 2021;112:3083–91.
- 32. Li Z, Bai J. Influence of alternating side gap on micro-hole machining performances in micro-EDM. Int J Adv Manuf Technol. 2018;94:979–89.
- 33. Chu Z, Zhao W, Gu L. Effect of electrode jump motion on machining debris concentration. J Mech Eng. 2013;49:185–92.
- 34. Zhang L, Wang Y, Wang Z. Gap flow simulation for micro-EDMdeep-small hole machining with flatted electrod. Electromach Mould. 2011;3:33–7.
- 35. Kim D, Kim YS, Song KY, Ahn SH, Chu CN. Kerosene sup-ply effect on performance of aluminum nitride micro-electrical discharge machining. Int J Precis Eng Manuf. 2022;23:581–91.
- 36. Wang K, Zhang Q, Zhu G, Liu Q, Huang Y. Experimental study on micro electrical discharge machining with helical electrode. Int J Adv Manuf Technol. 2017;93:2639–45.
- 37. Liu H, Bai J. The tool electrode wear and gap fluid field simulation analysis in micro-EDM drilling of micro-hole array. Procedia CIRP. 2020;95:220–5.
- 38. Feng G, Yang X, Chi G. Experimental and simulation study on micro hole machining in EDM with high-speed tool electrode rotation. Int J Adv Manuf Technol. 2019;101:367–75.
- 39. Tanjilul M, Ahmed A, Kumar AS, Rahman M. A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. J Mater Process Technol. 2018;255:263–74.
- 40. Maity K, Choubey M. Modeling and process simulation of vibration assisted workpiece in micro-EDM using FEM. World J Eng.2016;13(3):242–5.
- 41. Liu Y, Chang H, Zhang W, Ma F, Sha Z, Zhang S. Study on gap glow field simulation in small hole machining of ultrasonic assisted EDM. Mater Sci Eng. 2017;280: 012009.
- 42. Cetin S, Okada A, Uno Y. Effect of debris distribution on wall concavity in deep hole EDM. JSME Int J. 2004;47:553–5.
- 43. Jia ZY, Zheng XY, Wang FJ, Liu W. Research on flow state of interelectrode working fluid in micro-EDM. J Dalian Univer Technol. 2010;50:188–93.
- 44. Xie B, Zhang Y, Zhang J, Dai Y, Liu X. Flow field simulation and experimental investigation of ultrasonic vibration assisted EDM holes array. Int J Control Autom. 2015;8:419–24.
- 45. Wang J, Wang YG, Zhao FL. Simulation of debris movement in micro electrical discharge machining of deep holes. Mater Sci Forum. 2009;626:267–72.
- 46. Liu H, Bai J, Zhang B, Cao Y, Hou S, Zhou Z. Breakthrough detection and servo control for micro-hole array EDM drilling. Int J Adv Manuf Technol. 2022;119:615–29.
- 47. Jeong YH, Min BK. Geometry prediction of EDM-drilled holes and tool electrode shapes of micro-EDM process using simulation. Int J Mach Tool Manuf. 2007;47:1817–26.
- 48. Li H, Wang Z, Wang Y, Liu H, Bai Y. Micro-EDM drilling of ZrB2-SiC-graphite composite using micro sheet-cylinder tool electrode. Int J Adv Manuf Technol. 2017;92:2033–41.
- 49. Chung DK, Shin HS, Kim BH, Park MS, Chu CN. Surface finishing of micro EDM holes using deionized water. Micromech Microeng. 2009;19: 045025.
- 50. Jahan MP, Wong YS, Rahman M. A comparative experimental investigation of deep hole micro-EDM drilling capability forcemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol. 2010;46:1145–60.
- 51. Dilip DG, Panda S, Mathew J. Characterization and parametric optimization of micro-hole surfaces in micro-EDM drillingon Inconel 718 superalloy using genetic algorithm. Arab J Sci Eng. 2020;45:5057–74.
- 52. Urso GD, Maccarini G, Ravasio C. Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide. Int J Adv Manuf Technol. 2016;85:1–13.
- 53. Ma G, Yu P, Hou W, Wang L, Xu J. Study on discharge gap of micro-EDM of the micro hole in titanium alloy. In: 2018 IEEE international conference on manipulation manufacturing and measurement on the nanoscale. 2018, pp 253–257.
- 54. Pradhan B, Masanta M, Sarkar B, Bhattacharyya B. Investigation of electro-discharge micro-machining of titanium superalloy. Int J Adv Manuf Technol. 2009;41(11–12):1094–106.
- 55. Jahan MP, Lieh TW, Wong YS, Rahman M. An experimental investigation into the micro-electro discharge machining behavior of p-type silicon. Int J Adv Manuf Technol.2011;57:617–37.
- 56. Nguyen MD, Rahman M, Wong YS. An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int J Adv Manuf Technol. 2012;58:33–544.
- 57. Barman S, Hanumaiah N, Puri AB. Investigation on shape, size, surface quality and elemental characterization of high-aspect-ratio blind micro holes in die sinking micro EDM. Int J Adv Manuf Technol. 2015;76:115–26.
- 58. Tamang SK, Natarajan N, Chandrasekaran M. Optimization of EDM process in machining micro holes for improvement of holequality. J Braz Soc Mech Sci Eng. 2017;39:1277–87.
- 59. Maity KP, Singh RK. An optimisation of micro-EDM operation for fabrication of micro-hole. Int J Adv Manuf Technol. 2012;61:1221–9.
- 60. Mustafa A, Ulas C, Ahmet H. Optimization of micro-EDM drilling of inconel 718 superalloy. Int J Adv Manuf Technol. 2013;66:1015–25.
- 61. Hourmand M, Sarhan AAD, Sayuti M. Characterizing the effects of micro electrical discharge machining parameters on material removal rate during micro EDM drilling of tungsten carbide(WC-Co). IOP Conf Ser Mater Sci Eng. 2017;241: 012005.
- 62. Dave HK, Mathai VJ, Desai KP, Raval HK. Studies on quality of micro holes generated on Al 1100 using micro-electro-discharge machining process. Int J Adv Manuf Technol. 2015;76:127–40.
- 63. Kliuev M, Boccadoro M, Perez R, DalBo W, Sternimann J, Kuster F, Wegener K. EDM drilling and shaping of cooling holesin Inconel 718 turbine blades. Procedia CIRP. 2016;42:322–7.
- 64. Pandey AK, Gautam GD. Grey relational analysis-based genetic algorithm optimization of electrical discharge drilling of Nimonic-90 superalloy. J Br Soc Mech Sci Eng. 2018;40:117.
- 65. Urso GD, Merla C. Workpiece and electrode influence on micro-EDM drilling performance. Precis Eng. 2014;38:903–14.
- 66. Jahan MP, Wong YS, Rahman M. A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. Mater Process Technol. 2009;209:3956–67.
- 67. Teicher U, Muller S, Munzner J, Nestler A. Micro-EDM of carbon fibre-reinforced plastics. Procedia CIRP. 2013;6:320–5.
- 68. Park S, Kim G, Lee W, Min BK, Lee SW, Kim TG. Microhole machining on precision CFRP components using electrical discharging machining. In: 20th international conference on composite materials. Copenhagen 2015.
- 69. Baghela R, Mali HS. A study on effects of discharge energy on geometric characteristics of high aspect ratio micro-holes onTiN-Al2O3 ceramics. Mater Today Proc. 2018;5:17828–37.
- 70. Kuriakose S, Patowari PK, Bhatt J. Effect of micro-EDM machining parameters on the accuracy of micro hole drilling in Zr-based metallic glass. Eng Res Express. 2020;2:015001.
- 71. Ahmad JS, Shinde SR. Machinability of carbon/epoxy composites by electrical discharge machining. Int J Mach Mach Mater. 2016;18:3–17.
- 72. Ahmad JS. Hole quality and damage in drilling carbon/epoxy composites by electrical discharge machining. Mater Manuf Process. 2016;31:941–50.
- 73. Wang D, Zhao WS, Gu L, Kang XM. A study on micro-hole machining of polycrystalline diamond by micro-electrical discharge machining. J Mater Process Technol. 2011;211:3–11.
- 74. Pilligrin JC, Asokan P, Jerald J, Kanagaraj G, Mukund Nilakantan J, Nielsen I. Tool speed and polarity effects in micro-EDMdrilling of 316L stainless steel. Prod Manuf Res. 2017;5:99–117.
- 75. Bissacco G, Valentincic J, Hansen HN, Wiwe BN. Towards the effective tool wear control in micro-EDM milling. Int J Adv Manuf Technol. 2010;47:3–9.
- 76. Li G, Natsu W, Yang J, Yu Z. Bubble flushing effect in microEDM drilling and its relation with debris. J Mater Process Tech. 2022;305:117590.
- 77. Li G, Natsu W, Yu Z. Study on quantitative estimation of bubble behavior in micro hole drilling with EDM. Int J Mach Tool Manufact. 2019;146: 103437.
- 78. Singh R, Dvivedi A, Kumar P. EDM of high aspect ratio micro-holes on Ti-6Al-4V alloy by synchronizing energy interactions. Mater Manuf Process. 2020;35:1188–203.
- 79. Tam HY, Jiang W, Chan KL. A Process investigation for micro-EDM fabrication of through holes in thin copper sheets. Adv Mater Res. 2011;264:1376–82.
- 80. Feng X, Xu B, Lei J, Wu X, Luo F, Fu L. Elimination of holemouth burr in multilayer PCB micro-hole by using micro-EDM. Micromachines. 2021;12:688.
- 81. Dong S, Wang Z, Wang Y, Liu H. An experimental investigation of enhancement surface quality of micro-holes for Be-Cu alloysusing micro-EDM with multi-diameter electrode and different dielectrics. Procedia CIRP. 2016;42:257–62.
- 82. Chung DK, Shin HS, Park MS, Chu CN. Machining characteristics of micro EDM in water using high frequency bipolar pulse.Int J Precis Eng Manuf. 2010;12:195–201.
- 83. Uhlmann E, Schimmelpfennig TM, Perfilov I, Streckenbach J, Schweitzer L. Comparative analysis of dry-EDM and conventional EDM for the manufacturing of micro holes in Si3N4-TiN. Procedia CIRP. 2016;42:173–8.
- 84. Kibria G, Sarkar B, Pradhan B, Bhattacharyya B. Comparative study of different dielectrics for micro-EDM performance during micro hole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol. 2010;48:557–70.
- 85. Li G, Natsu W. Realization of micro EDM drilling with high machining speed and accuracy by using mist deionized water jet. Precis Eng. 2020;61:136–46.
- 86. Sun Z, Chen J, Lu G. A review on electrode compensation methods in micro-EDM. Electromach Mould. 2013;1:1–5.
- 87. Masuzawa T. Three-dimensional micro machining by machine tools. CIRP Ann Manuf Technol. 1997;46:621–8.
- 88. Yu ZY, Masuzawa T, Fujino M. Micro-EDM for three dimensional cavities-development of uniform wear method. CIRP Ann Manuf Technol. 1998;47(1):169–72.
- 89. Yu HL, Luan JJ, Li JZ, Zhang YS, Yu ZY, Guo DM. A new electrode wear compensation method for improving performance in3D micro EDM milling. J Micromech Microeng. 2010;20:55011.
- 90. Nirala CK, Saha P. Precise μEDM-drilling using real-timein direct tool wear compensation. J Mater Process Technol. 2017;240:176–89.
- 91. Hou S, Bai J. Electrode wear prediction and of fline compensation for micro-EDM drilling through-hole array using geometry simulation. Int J Adv Manuf Technol. 2022;120:6877–89.
- 92. Lin C, Li J, Liang S, Zhang Y, Gou J, Liu J, Li Y. Improvingthe precision of micro-EDM for blind holes in titanium alloy by fixed reference axial compensation. Rev Adv Mater Sci.2021;60:771–83.
- 93. Lee CS, Heo EY, Kim JM, Choi TH, Kim DW. Electrode wear estimation model for EDM drilling. Robot Comput Integr Manuf. 2015;36:70–5.
- 94. Chang YF, Chiu ZH. Electrode wear-compensation of electric discharge scanning process using a robust gap-control. Mechatronics. 2004;14:1121–39.
- 95. Aligiri E, Yeo SH, Tan PC. A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM. J Mater Process Technol. 2010;210:2292–303.
- 96. Mahardika M, Mitsui K. A new method for monitoring micro-electric discharge machining process. Int J Mach Tool Manufact. 2008;148:446–58.
- 97. Mahardika M, Tsujimoto T, Mitsui K. A new approach on the determination of ease of machining by EDM processes. Int J Mach Tool Manufact. 2008;7–8:746–60.
- 98. Jung JW, Hoon KS, Jeong YH, Min BK, Lee SG. Real-time gap control for micro-EDM: application in a micro factory. Int J Precis Eng Manuf. 2008;9:3–6.
- 99. Bissacco G, Hansen HN, Tristo G, Valentincic J. Feasibility of wear compensation in micro EDM milling based on discharge counting and discharge population characterization. CIRP Ann Manuf Technol. 2011;60:231–4.
- 100. Tong H, Li Y, Hu M. Experimental research on effects of process parameters on servo scanning 3D micro electrical discharge machining. Chin J Mech Eng. 2012;25:114–21.
- 101. Yan MT, Lin SS. Process planning and electrode wear compensation for 3D micro-EDM. Int J Adv Manuf Technol. 2011;53:209–19.
- 102. Huang Y, Qixuan X, Liu M, Zhang Q. Prediction of electrode loss in micro-EDM drilling based on discharge time. Int J Adv Manuf Technol. 2021;115:3003–10.
- 103. Malayath G, Katta S, Sidpara AM, Deb S. Length-wise tool wear compensation for micro electric discharge drilling of blind holes. Measurement. 2019;134:888–96.
- 104. Yan MT, Huang KY, Lo CY. A study on electrode wear sensing and compensation in Micro-EDM using machine vision system. Int J Adv Manuf Technol. 2009;42:1065–73.
- 105. Yang H, Ding W, Chen Y, Laporte S, Xu J, Fu Y. Drilling force model for forced low frequency vibration assisted drilling of Ti–6Al–4V titanium alloy. Int J Mach Tool Manufact. 2019;146:103438.
- 106. Liu X, Wu D, Zhang J, Hu X, Cui P. Analysis of surface texturingin radial ultrasonic vibration-assisted turning. J Mater Process Technol. 2019;267:186–95.
- 107. Li G, Yu Z, Song J, Li C, Li J, Natsu W. Material removal modesof quartz crystals by micro USM. Procedia CIRP. 2016;42:842–6.
- 108. Wang H, Hu Y, Cong W, Hu Z. A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration. Int J Mech Sci. 2019;155:450–60.
- 109. Okada A, Yamaguchi A, Ota K. Improvement of curved hole EDM drilling performance using suspended ball electrode by workpiece vibration. CIRP Ann Manuf Technol.2017;66:189–92.
- 110. Yang Z, Zhu L, Zhang G, Ni G, Lin B. Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tool Manufact. 2020;156: 103594.
- 111. Zhang C, Song Y. Design and kinematic analysis of a novel decoupled 3D ultrasonic elliptical vibration assisted cutting mechanism. Ultrasonics. 2019;95:79–94.
- 112. Pham DT, Dimov SS, Bigot S, Ivanov A, Popov K. Micro-EDM-recent developments and research issues. J Mater Process Technol. 2004;149:50–7.
- 113. Zeis M. Deformation of thin graphite electrodes with high aspect ratio during sinking electrical discharge machining. CIRP Ann Manuf Technol. 2017;66:185–8.
- 114. Ichikawa T, Natsu W. Realization of micro-EDM under ultra-small discharge energy by applying ultrasonic vibration to machining fluid. Procedia CIRP. 2013;6:326–31.
- 115. Garn R, Schubert A, Zeidler H. Analysis of the effect of vibrations on the micro-EDM process at the workpiece surface. Precis Eng. 2011;35:364–8.
- 116. Wang J, Feng P, Zhang J, Guo P. Experimental study on vibration stability in rotary ultrasonic machining of ceramic matrix composites: cutting force variation at hole entrance. Ceram Int. 2018;44:14386–92.
- 117. Li Z, Tang J, Li Y, Bai J. Investigation on surface integrity innovel micro-EDM with two-dimensional ultrasonic circular vibration (UCV) electrode. J Manuf Process. 2022;76:828–40.
- 118. Zou Z, Guo Z, Huang Q, Yue T, Liu J, Chen X. Precision EDM of micron-scale diameter hole array using in-process wire electro-discharge grinding high-aspect-ratio microelectrodes. Micromachines. 2021;12:17.
- 119. Liao YS, Liang HW. Study of vibration assisted inclined feed micro-EDM drilling. Procedia CIRP. 2016;42:552–6.
- 120. Goiogana M, Sarasua JA, Ramos JM. Ultrasonic assisted electrical discharge machining for high aspect ratio blind holes. Procedia CIRP. 2018;68:81–5.
- 121. Lee PA, Kim Y, Kim BH. Effect of low frequency vibration on micro EDM drilling. Int J Precis Eng Manuf. 2015;16:2617–22.
- 122. Singh SK, Mali HS, Unune DR, Abdul-Rani AM, Wojciechowski S. Material independent effectiveness of workpiece vibration inμ-EDM drilling. J Market Res. 2022;18:531–46.
- 123. Wang HB, Sun CH, Yang YF. An ultrasonic vibration assisted electrical discharge machining device with workpiece vibration. J Appl Sci Eng. 2020;24:21–32.
- 124. Jahan MP, Saleh T, Rahman M, Wong YS. Study of micro-EDMof tungsten carbide with workpiece vibration. Adv Mater Res. 2011;264:1056–61.
- 125. Jia B, Wang D, Wang Z, Zhao W. Experiment study of combining micro EDM with USM. Key Eng Mater. 2008;375:248–52.
- 126. Jia B, Wang DS, Guo JZ. Machining deep micro holes by EDM with USM in inversion installing. Mater Sci Forum.2009;626:321–6.
- 127. Chern GL, Chuang Y. Study on vibration-EDM and mass punching of micro-holes. J Mater Process Technol. 2006;180:151–60.
- 128. Gao CS, Liu ZX. A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. JMater Process Technol. 2003;139:226–8.
- 129. Das AK, Kumar P, Sethi A, Singh PK, Hussain M. Influence of process parameters on the surface integrity of micro-holesof SS304 obtained by micro-EDM. J Braz Soc Mech Sci Eng.2016;38:2029–37.
- 130. Li Z, Tang J, Bai J. A novel micro-EDM method to improve micro hole machining performances using ultrasonic circular vibration (UCV) electrode. Int J Mech Sci. 2020;175: 105574.
- 131. Kurniawan R, Thirumalai Kumaran S, Arumuga Prabu V, ZhenY, Park KM, Kwak YI, Islam MM, Ko TJ. Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for de burring drilled holes inCFRP composite. Measurement. 2017;110:98–115.
- 132. Yan BH, Huang FY, Chow HM, Tsai JY. Micro-hole machining of carbide by electric discharge machining. J Mater Process Technol. 1999;87:139–45.
- 133. Zhao W, Zhenlong W, Shichun D, Chi G, Wei H. Ultrasonic and electric discharge machining to deep and small hole on Titanium Alloy. J Mater Process Technol. 2002;120:101–6.
- 134. Li Y, Hou W, Xu J, Yu H. An Investigation on drilling microholes in different processes using micro-EDM. IEEE Int Conf Mechatron Autom. 2016;2016:1283–8.
- 135. Mattia B, Qian J, Reynaerts D. Enhancement of the micro-EDM process for drilling through-holes. Procedia CIRP. 2018;68:610–5.
- 136. Rafaqat M, Mufti NA, Ahmed N, Alahmari AM, Hussain A. EDM of D2 steel: performance comparison of EDM die sinking electrode designs. Appl Sci. 2020;10(21):7411.
- 137. Kumar R, Singh I. A modified electrode design for improving process performance of electric discharge drilling. J Mater Process Technol. 2019;264:211–9.
- 138. Hung JC, Lin JK, Yan BH, Liu HS, Ho PH. Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J Micromech Microeng. 2006;16(12):2705.
- 139. Plaza S, Sanchez JA, Perez E, Gil R, Izquierdo B, Ortega N, Pombo I. Experimental study on micro EDM-drilling of Ti6al4v using helical electrode. Precis Eng. 2014;38(4):821–7.
- 140. Ferraris E, Castiglioni V, Ceyssens F, Annoni M, Lauwers B, Reynaerts D. EDM drilling of ultra-high aspect rati omicro holes with insulated tools. CIRP Ann Manuf Technol. 2013;62(1):191–4.
- 141. Dong S, Wang Z, Wang Y. Research on micro-EDM with an aux-iliary electrode to suppress stray-current corrosion on C17200 beryllium copper alloy in deionized water. Int J Adv Manuf Technol. 2017;93:857–67.
- 142. Liu Q, Zhang Q, Zhang M, Yang F, Rajurkar KP. Effects of surface layer of AISI 304 on micro EDM performance. Precis Eng. 2019;57:195–202.
- 143. Haque R, Sekh M, Kibria G, Haidar S. Comparative study of parametric effects on the performance of simple and powder mixed EDM using aluminium and graphite powder on Inconel X750 alloy. Mater Today Proc. 2021;46:8366–73.
- 144. Dong S, Wang Z, Wang Y, Zhang J. Micro-EDM drilling of high aspect ratio micro-holes and in situ surface improvement in C17200 beryllium copper alloy. J Alloy Compd.2017;727:1157–64.
- 145. Rashid A, Bilal A, Liu C, Jahan MP, Talamona D, PerveenA. Effect of conductive coatings on micro-electro-discharge machinability of aluminum nitride ceramic using on-machine-fabricated microelectrodes. Materials. 2019;12:3316.
- 146. Koli BC, Dabade UA. Performance analysis of powder assisted reverse micro electric discharge machining (m-EDM). Mater Today Proc. 2019;19:551–5.
- 147. Zhang L, Tong H, Li Y. Precision machining of micro tool electrodes in micro EDM for drilling array micro holes. Precis Eng. 2015;39:100–6.
- 148. Huan L, Bai J, Cao Y, Zhu G, Hou S. Micro-electrode wear and compensation to ensure the dimensional consistency accuracy of micro-hole array in micro-EDM drilling. Int J Adv Manuf Technol. 2020;111:1–13.
- 149. Li C, Hu Y, Zhang F, Geng Y, Meng B. Molecular dynamicssimulation of laser assisted grinding of GaN crystals. Int J Mech Sci. 2023;239: 107856.
- 150. Wu C, Zhang T, Guo W, Meng X, Ding Z, Liang SY. Laser-assisted grinding of silicon nitride ceramics: Micro-groove preparation and removal mechanism. J Ceram Int. 2022;48:32366–79.
- 151. Ni C, Zhu L, Liu C, Yang Z. Analytical modeling of tool-work-piece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V. Int J Mech Sci. 2018;142:97–111.
- 152. Zhao B, Wu B, Yue Y, Ding W, Xu J, Guo G. Developing a novel radial ultrasonic vibration-assisted grinding device and evaluating its performance in machining PTMCs. Chin J Aeronaut.2023;36:244–56.
- 153. Qin S, Zhu L, Wiercigroch M, Ren T, Hao Y, Ning J, Zhao J. Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling. Int J Mech Sci. 2022;227:107375.
- 154. Ni C, Zhu L. Investigation on machining characteristics of TC4alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. J Mater Process Technol. 2020;278:116518.
- 155. Sun B, Fu X, Xu Y, Gu Y. Research on ultrasonic vibration grinding technology of SiCp/Al composites. Diam Abras Eng.2022;42:713–9.
- 156. Hao X, Yuan Z, Wen Q, Guo S. Process research on ultrasonic vibration assisted lapping of single crystal silicon carbide. Diam Abras Eng. 2022;42:268–74.
- 157. Feng Y, Guo Y, Ling Z, Zhang X. Investigation on machining performance of micro-holes EDM in ZrB2-SiC ceramics using a magnetic suspension spindle system. Int J Adv Manuf Technol. 2019;101:2083–95.
- 158. He X, Wang Y, Wang Z, Zeng Z. Micro-hole drilled by EDM-ECM combined processing. Key Eng Mater. 2013;562:52–6.
- 159. Wu YY, Huang TW, Sheu DY. Desktop micro-EDM system forhigh-aspect ratio micro-hole drilling in tungsten cemented carbide by cut-side micro-tool. Micromachines. 2020;11:675.
- 160. Xu B, Feng X, Wu X, Luo F, Fu L, Zhai X, Zhao Y, Zhao H, LeiJ. Micro-EDM-assisted machining micro-holes in printed circuit board. Int J Adv Manuf Technol. 2021;113:1191–201.
- 161. Hwang YL, Kuo CL, Hwang SF. Fabrication of a micropin arraywith high density and high hardness by combining mechanical peck-drilling and reverse-EDM. J Mater Process Technol. 2010;210:1103–30.
- 162. Liu HS, Yan BH, Chen CL, Huang FY. Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. Int J Mach Tool Manufact. 2006;46:80–7.
- 163. Al-Ahmari AMA, Rasheed MS, Mohammed MK, Saleh T. Ahybrid machining process combining micro-EDM and laser beam machining of nickel-titanium based shape memory alloy. MaterManuf Process. 2016;31:447–55.
- 164. Lin Y, Tsao C, Hsu C, Hung S, Wen D. Evaluation of the characteristics of the micro electrical discharge machining processusing response surface methodology based on the central composite design. Int J Adv Manuf Technol. 2012;62(9–12):1013–23.
- 165. Ashok Kumar U, Laxminarayana P. Optimization of electrode tool wear in micro holes machining by die sinker EDM using taguchi approach. Mater Today Proc. 2018;5:1824–31.
- 166. Kumar P, Pattanaik LN, Singh RK. Simultaneous parametric optimization of micro-EDM drilling of brass C360 using Taguchi based grey relation analysis. Eng Rev. 2019;41:14–24.
- 167. Imran M, Mativenga P, Gholinia A, Withers P. Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int J Adv Manuf Technol. 2015;79:1303–11.
- 168. Azad MS, Puri AB. Simultaneous optimisation of multiple performance characteristics in micro-EDM drilling of titanium alloy. Int J Adv Manuf Technol. 2012;61:1231–9.
- 169. Siva M, Parivallal M, Pradeep KM. Investigation on the effect of process parameters in micro electrical discharge machining. Procedia Mater Sci. 2014;5:1829–36.
- 170. Natarajan N, Suresh P. Experimental investigations on the micro-hole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. Int J Adv Manuf Technol.2015;77:1741–50.
- 171. Kumar K, Rawal SK, Singh VP, Bala A. Experimental study on diametric expansion and taper rate in EDM drilling for high aspect ratio micro holes in high strength materials. Mater TodayProc. 2018;5:7363–72.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e80265-87aa-4a6e-a5c8-9bdd22d0cb23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.