PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Maintenance – identification and analysis of the competency gap

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Utrzymanie ruchu – identyfikacja i analiza luki kompetencyjnej
Języki publikacji
EN PL
Abstrakty
EN
The efficiency of maintenance processes in an enterprise largely depends on ensuring adequate resources for its implementation. The main factor that affects the quality of these processes is competent employees. Their knowledge, skills and ability to respond to unexpected situations largely determine the efficiency of the functioning of the technical infrastructure in an enterprise. In the light of the prospects for the development of the Industry 4.0 concept, and, thus, for the development of highly automated systems, the demand for qualified maintenance employees will increase. Therefore, in order to ensure the right level of competency of maintenance workers, through the proper assessment and identification of their competency gap, is an important task of managers. In many enterprises this is not implemented. The aim of the presented work was to developed a comprehensive model of the competency assessment of maintenance workers. The implementation of the developed model enables the identification of the current level of employees’ competencies and identification of the competency gap, as well as it allows to assess the effects of a failure to meet the required level of competency. Additionally, the results of the identification of the real activities taken by the surveyed enterprises concerning the competency assessment of maintenance services employees are presented in this article. The study was carried out in manufacturing enterprises in different industries on a specific area. The results were analysed and presented in a graphic form.
PL
Efektywność działań utrzymania ruchu w przedsiębiorstwie w dużej mierze zależy od zapewnienia odpowiednich zasobów do jego realizacji. Podstawowym czynnikiem, który ma wpływ na jakość realizacji tych działań są kompetentni pracownicy. Ich wiedza, umiejętności i zdolności reagowania na nieprzewidziane sytuacje, w dużej mierze decydują o sprawności funkcjonowania posiadanej infrastruktury technicznej w przedsiębiorstwie. W świetle perspektyw rozwoju koncepcji Przemysł 4.0, a tym samym rozwoju wysoce zautomatyzowanych systemów, wzrośnie zapotrzebowanie na wykwalifikowanych pracowników utrzymania ruchu. Dlatego ważnym zadaniem menedżerów przedsiębiorstw jest zapewnienie właściwego poziomu kompetencji pracowników utrzymania ruchu, poprzez ich odpowiednią ocenę i identyfikację luki kompetencyjnej, co w wielu przedsiębiorstwach nie jest realizowane. Celem przedstawionej pracy było opracowanie kompleksowego modelu oceny kompetencji pracowników utrzymania ruchu. Zastosowanie opracowanego modelu umożliwi identyfikację aktualnego poziomu kompetencji pracowników, identyfikację luki kompetencyjnej, jak również pozwoli ocenić skutki niezapewnienia wymaganego poziomu kompetencji. Dodatkowo w pracy przedstawiono wyniki badań, których celem było zidentyfikowanie rzeczywistych działań realizowanych w przedsiębiorstwach w zakresie oceny kompetencji pracowników służb utrzymania ruchu. Badania przeprowadzono w przedsiębiorstwach produkcyjnych, w różnych branżach przemysłu na określonym obszarze. Wyniki badań opracowano i przedstawiono w postaci graficznej.
Rocznik
Strony
484--494
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Faculty of Mechanical Engineering and Aeronautics Rzeszow University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Abele E, Reinhart G. Zukunft der Produktion, München: Hanser, Carl, 2011.
  • 2. Baron – Puda M. Projektowanie strategii rozwoju kompetencji pracowników przedsiębiorstw produkcyjnych. Zarządzanie przedsiębiorstwem 2012; 4: 2-11.
  • 3. Bokrantz J, Skoogh A, Berlin C, Stahre J. Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030. International Journal of Production Economics 2017: 191: 154-169.
  • 4. Dalkilic S. Improving aircraft safety and reliability by aircraft maintenance technician training. Engineering Failure Analysis 2017; 82: 687-694,https://doi.org/10.1016/j.engfailanal.2017.06.008.
  • 5. Furman J. Poprawa skuteczności utrzymania maszyn w przedsiębiorstwie produkcyjnym – studium przypadku. Komputerowe Zintegrowane Zarządzanie, 2016:548-557.
  • 6. Gonczi A, Hager P, Athanasou J. The Development of Competency-Based Assessment Strategies for the Professions National Office of Overseas Skills Recognition, Australia: 1993.
  • 7. Greenstein L. Assessing 21st century skills: A guide to evaluating mastery and authentic learning SAGE: 2012.
  • 8. Hameed A. Using Gaussian membership functions for improving the reliability and robustness of students' evaluation systems. Expert Systems with Applications 2011; 38(6): 7135–7142, https://doi.org/10.1016/j.eswa.2010.12.048.
  • 9. Herterich M, Uebernickel F, Brenner W. The Impact of Cyber-Physical Systems on Industrial Services in Manufacturing. Procedia CIRP 2015; 30: 323-328, https://doi.org/10.1016/j.procir.2015.02.110.
  • 10. Hertlea C, Tischa M, Kläsa H, Metternicha J, Abelea E. Recording Shop Floor Management Competencies – A Guideline for a Systematic Competency Gap Analysis. Procedia CIRP 2016; 57: 625 – 630, https://doi.org/10.1016/j.procir.2016.11.108.
  • 11. Jasiulewicz-Kaczmarek M, Drożyner P. Preventive and Pro-Active Ergonomics Influence on Maintenance Excellence Level, [in.] M.M. Robertson (eds.) Ergonomics and Health Aspects, HCII 2011, LNCS 6779 Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-21715-9 2011; 49-58.
  • 12. Jasiulewicz-Kaczmarek M, Saniuk A, Nowicki T. The maintenance management in the macro-ergonomics context. [in.] Richard H.M. Goossens (eds.) Advances in Social & Occupational Ergonomics Proceedings of the AHFE2016 Conference on Social & Occupational Ergonomics, July 27-31, Walt Disney World®, Florida, USA Series: Advances in Intelligent Systems and Computing 2016; 487:35-46, https://doi.org/10.1007/978-3-319-41688-5.
  • 13. Kaufhold M. Kompetenz und Kompetenzerfassung.VS, Verl Für Sozialwiss, 2006.
  • 14. Loska A. Scenario modeling exploitation decision-making processes in technical network systems. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19 (2): 268–278, https://doi.org/10.17531/ein.2017.2.15.
  • 15. Mathworks. Fuzzy inference system modelling: Gaussian combination membership function, 2014. available: http://www mathworks se/help/fuzzy.
  • 16. Matlab, MATLAB 7 12 0 (R2011a), Fuzzy logic Toolbox, 1984–2014 The MathWorks, Inc , 2014.
  • 17. Misiurek B. Metodyka standaryzacji autonomicznych działań eksploatacyjnych zorientowana na poprawę efektywności maszyn zautomatyzowanych, Praca doktorska, Uniwersytet Technologiczny we Wrocławiu, 2015.
  • 18. Muller A, Marquez A C, Iung B. On the concept of e-maintenance: Review and current research. Reliability Engineering and System Safety 2008; 93:1165-1187, https://doi.org/10.1016/j.ress.2007.08.006.
  • 19. Müllera R, Vette M, Geenen A. Skill-based dynamic task allocation in Human-Robot-Cooperation with the example of welding application. Procedia Manufacturing 2017: 13 – 21.
  • 20. Paśkiewicz J. Doskonalenie procesu nadzoru maszyn na przykładzie wybranego przedsiębiorstwa, diploma thesis under supervising K. Antosz, Rzeszów, 2016.
  • 21. Pellegrino J, Justiniano M, Raghunathan A. Measurement Science Roadmap for Prognostics and Health Management for Smart Manufacturing Systems, NIST Advanced Manufacturing Series 2017; 191: 154-169.
  • 22. Pittich D. Diagnostik fachlich-methodischer Kompetenzen, Fraunhofer IRB Verl, 2013.
  • 23. Ratnayake RMC. Knowledge based engineering approach for subsea pipeline systems FFR assessment: A fuzzy expert system. The TQM Journal 2016; 28:40–61, https://doi.org/10.1108/TQM-12-2013-0148.
  • 24. Rodriguez D, Patel R, Bright A, Gregory D, Gowing M K. Developing competency models to promote integrated human resource practices. Human Resource Management 2002; 41(3): 309-324, https://doi.org/10.1002/hrm.10043.
  • 25. Roy R , Stark R, Tracht K, Takata S, Mori M. Continuous maintenance and the future - Foundations and technological challenges. CIRP Annals -Manufacturing Technology 2016; 65: 667-688. https://doi.org/10.1016/j.cirp.2016.06.006
  • 26. Schlick C, Bruder R, Luczak H. Arbeitswissenschaft. 3. Auflage Springer-Verlag, 2010, https://doi.org/10.1007/978-3-540-78333-6.
  • 27. Sherwin D J. A review of overall models for maintenance management Journal of Quality in Maintenance Engineering 2000; 1(1): 15-19, https://doi.org/10.1108/13552519510083101.
  • 28. Shingo S. Study of "Toyota" Production system from industrial engineering viewpoint Tokyo: Japan Management Association, 1981.
  • 29. Smith R, Mobley R K. Maintenance Skills Assessment, Industrial Machinery Repair 2003: 26–49, https://doi.org/10.1016/B978-075067621-2/50003-2.
  • 30. Stadnicka D, Arkhipov D, Battaıa O, Ratnayake RMC. Skills management in the optimization of aircraft maintenance processes. IFAC PapersOnLine 2017; 50(1): 6912–6917, https://doi.org/10.1016/j.ifacol.2017.08.1216.
  • 31. Tay K M, Lim C P. On the use of fuzzy inference techniques in assessment models: part II: industrial applications. Fuzzy Optimization and Decision Making 2008; 3:283–302, https://doi.org/10.1007/s10700-008-9037-y.
  • 32. Wirkus M, Drozd R, Bielski R. Production employees competence in apparatus processes. Management Forum 2015; 3(30:63-70.
  • 33. Zio E. Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety 2009; 94:125-41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e749a4-092c-41f8-8fbf-80b827ea317a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.