PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the variability of the support of the mortar base plate on the quality of the results obtained in the process of its numerical design

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ zmienności podparcia płyty oporowej moździerza na jakość uzyskanych wyników w procesie jej projektowania numerycznego
Języki publikacji
EN
Abstrakty
EN
Due to the high costs associated with the purchase of ammunition and firing in certified training ground centers, tests of retaining plate deformations are increasingly replaced by computer simulations using numerical models. Computer programs usually use a single-parameter subsoil model (Winkler-Zimmermann) for calculations, which requires providing the subgrade susceptibility coefficient. The subgrade compliance coefficient is intended to determine the mutual reaction of the subgrade and the structure due to the pressure exerted on the soil by the retaining slab, which settles. When designing slabs in computer programs, it is assumed that the substrate compliance coefficient is constant. Determining the impact of the soil on the retaining slab is important when analyzing its deformations. The subject of the work was the analysis of the influence of ground support on the results obtained during modeling of the retaining slab. In order to obtain data for FEM analysis and validation, the actual strains occurring on the thrust plate were measured using strain gauge rosettes. The plate deformations were measured during field shooting tests. In order to vary the influence of supporting the slab on the ground and obtain reliable stress values on the slab surface, a method of successive iterations was proposed. Calculations are performed using this method until the error is smaller than the assumed one.
PL
Ze względu na wysokie koszty związane z zakupem amunicji oraz realizacją ostrzału w certyfikowanych ośrodkach poligonowych badania odkształceń płyty oporowej są coraz częściej zastępowane symulacjami komputerowymi za pomocą modeli numerycznych. Programy komputerowe wykorzystują przeważnie do obliczeń jednoparametrowy model podłoża (Winklera-Zimmermanna), w którym wymaga się podania współczynnika podatności podłoża. Współczynnik podatności podłoża gruntowego ma na celu określenie wzajemnej reakcji podłoża i konstrukcji, przez nacisk wywierany na grunt przez osiadającą płytę oporową. Przy projektowaniu płyt w programach komputerowych zakłada się, że współczynnik podatności podłoża jest stały. Określenie oddziaływania gruntu na płytę oporową jest istotne przy analizie jej odkształceń. Przedmiotem pracy była analiza wpływu sposobu pod parcia płyty oporowej o podłoże gruntu na uzyskane wyniki w trakcie jej modelowania. W celu uzyskania danych do analizy i walidacji MES, przeprowadzono pomiar rzeczywistych odkształceń występujących na płycie oporowej za pomocą rozet tensometrycznych. Pomiaru odkształceń płyty dokonano podczas poligonowych badań strzelaniem. W celu uzmiennienia wpływu podparcia płyty o podłoże oraz uzyskania miarodajnych wartości na prężeń na powierzchni płyty, zaproponowano metodę kolejnych iteracji. Metodą tą są wykonywane obliczenia do chwili uzyskania błędu mniejszego od założonego.
Rocznik
Strony
103--111
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
  • Doctoral School of Rzeszow University of Technology
  • Department of Integrated Technology Component Manufacturing and Production Organization, Faculty of Mechanics and Technology, Rzeszow University of Technology
  • Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszow University of Technology
Bibliografia
  • 1. Anitescu, C., Atroshchenko, E., Alajlan, N., & Rabczuk, T. (2019). Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59(1), 345–359.
  • 2. Bartnik, G., Józefiak, K., Superczyńska, M., Czerwińska, M., Krajewski, W., Legieć, J., Kuśnierz, T., Magier, M. (2021). The use of geotechnical methods to determine the deformation parameters of the ground in terms of operation and safety of mortar use. Materials, 14(23), Article 7237. https://doi.org/10.3390/ma14237237
  • 3. Bielski, J. (2010). Introduction to engineering applications of the finite element method. The publishing house of the Krakow University of Technology.
  • 4. Dacko, M, Borkowski, W, Dobrociński, S, Niezgoda, T., & Wieczorek, M. (1994). Finite element method in structural mechanics. Arkady.
  • 5. Gomez, F., & Spencer, B. F. (2019). Topology optimization framework for structures subjected to stationary stochastic dynamic loads. Structural and Multidisciplinary Optimization, 59, 813–833. https://doi.org/10.1007/s00158-018-2103-3
  • 6. Kacprzyk, Z., Maj, M., Pawłowska, B., & Sokół, T. (2011). Finite element method manual (2nd ed.). Warsaw University of Technology Publishing House.
  • 7. Kleiber, M. (1989). Introduction to the finite element method. State Sci. Pub. House.
  • 8. Lee, H. -A., & Park, G. -J. (2015). Nonlinear dynamic response topology optimization using the equivalent static loads method. Computer Methods in Applied Mechanics and Engineering, 283, 956–970. https://doi.org/10.1016/j.cma.2014.10.015
  • 9. Ristić, Z., Kari, A., & Bajević, M. (2009). Dynamic analysis of the mortar base model using the Pro/engineer software package. Vojnotehnički Glasnik, 57(1), 81–89. http://dx.doi.org/10.5937/vojtehg0901081R
  • 10. Szwajka, K., Szewczyk, M., & Trzepieciński, T. (2022). Experimental Compaction of a High-Silica Sand in Quasi-Static Conditions. Materials, 16(1), Article 28. https://doi.org/10.3390/ma16010028
  • 11. Wang, X. (2019). Optimal design of a large caliber mortar base plate structure. Nanjing University of Technology.
  • 12. Wang, F., Yang, G., Wang, D., Ge, J., Yu, Q., & Li, Z. (2020). Research on the test and lightweight design of a mortar base plate. Vibration and Shock, 39(17), 76–81. https://doi.org/10.13465/j.cnki.jvs.2020.17.011
  • 13. Wang, F., & Yang, G. (2021). Topological design of a mortar base plate under impact loads. Shock and Vibration, 2021(1), 1-13. https://doi.org/10.1155/2021/8845019
  • 14. Zhang, X., Liu, S., Peng, K. et al. (2016). Topological optimization design for mortar’s base plate. Journal of Ordnance Equipment Engineering, 4, 33–35.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e6bed2-9d2e-4a3a-b31b-a2fe92602bb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.