PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of the Characteristic Curves of Silkworm Cocoon Hot air Drying and its Technological Configuration

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd charakterystycznych krzywych suszenia gorącym powietrzem kokonu jedwabnika
Języki publikacji
EN
Abstrakty
EN
To pass on Chinese cocoon-drying technology to developing countries, this paper reviews characteristic curves of silkworm cocoon hot air drying and its recent research advances in cocoon-drying technology in China based on the epochal and regional characters of cocoon drying technology development. (1) Three characteristic curves of cocoon drying are systematically explained, each of which can be divided into preheating, constant speed, and deceleration stages. The temperature susceptibility (i.e., the characteristics of response to temperature conditions) curve of the pupa successively shows heating, constant temperature, and heating processes. (2) Changes in the drying speed and temperature susceptibility of a fresh cocoon layer and naked pupae were examined in detail before and after pupae were killed in the preheating stage. It is proposed that heating the cocoons as soon as possible during the preheating stage of cocoon drying improves the work efficiency and cocoon quality. (3) The effects of the temperature and humidity of the hot air on the cocoon drying speed (i.e., speed coefficients) are obtained using the enthalpy psychrometric chart. The parameter configuration of cocoon drying technology is elaborated according to the speed coefficients in combination with the characteristic curves of cocoon drying and the influence of the laws of cocoon drying technology on cocoon quality. Furthermore, problems in the technological configuration and the direction of future development are noted.
PL
Aby przekazać chińską technologię suszenia kokonów krajom rozwijającym się, w artykule przedstawiono charakterystyczne krzywe suszenia gorącym powietrzem kokonu jedwabnika oraz najnowsze osiągnięcia w dziedzinie technologii suszenia kokonów w Chinach w oparciu o epokowe i regionalne cechy technologii suszenia kokonów. Przedstawiono trzy charakterystyczne krzywe suszenia kokonów, które można podzielić na etapy podgrzewania wstępnego, stałej prędkości i spowalniania. Zbadano szczegółowo zmiany w szybkości i prędkości suszenia świeżej warstwy kokonu i nagich poczwarek przed i po zabiciu poczwarek na etapie wstępnego podgrzewania. Zaproponowano jak najszybsze podgrzewanie kokonów podczas etapu wstępnego suszenia kokonu, co wpływa na poprawę wydajność pracy i jakość kokonu. Wpływ temperatury i wilgotności gorącego powietrza na prędkość suszenia kokonu (tj. współczynniki prędkości) oceniono stosując wykres psychrometryczny entalpii. Konfigurację parametrów technologii suszenia kokonów opracowywano na podstawie analizy uzyskanych współczynników prędkości, charakterystyk krzywych suszenia kokonu i wpływu technologii suszenia na jakość kokonu.
Rocznik
Strony
20--28
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
autor
  • Jiangsu Vocational College of Agriculture and Forestry, Department of Landscape Architecture, Jurong 212400, China
autor
  • School of Civil & Architectural Engineering, Anyang Institute of Technology, Anyang, 455000, China
autor
  • Southeast University, Civil Engineering & International Institute for Urban Systems Engineering, Nanjing, 210096, China
autor
  • Jiangsu Vocational College of Agriculture and Forestry, Department of Landscape Architecture, Jurong 212400, China
autor
  • Jiangsu Vocational College of Agriculture and Forestry, Department of Landscape Architecture, Jurong 212400, China
Bibliografia
  • 1. Manchester H. The Story of Silk & Cheney Silks. Primary Source Edition. New York : Cheney Brothers, 1916, p.74.
  • 2. Carrera-Gallissa E, Capdevila X, Valldeperas J. Influence of silk-elike finishing process variables on fabric properties. FIBRES & TEXTILES in Eastern Europe 2017; 25, 4(124): 82-88.
  • 3. Zuo LY, Zhang F, Gao B, Zuo BQ. Fabrication of electrical conductivity and reinforced electropum silk nanofibers with MWNTs. FIBRES & TEXTILES in Eastern Europe 2017; 25, 3(123): 40-44.
  • 4. Jiang S, Cao G, Cai G, Xu W, Li W, Wang X. Unidrectional torsion properties of single silk fibre. FIBRES & TEXTILES in Eastern Europe 2016; 24, 3(117): 26-30.
  • 5. McLaughlin R. Silk ties: links between ancient Rome & China. History Today 2008; 58: 34-41.
  • 6. Hansen SD. The emperor's new clothes: sericulture, silk trade, and sartorial exchange along the silk road prior to the first crusade. Master’s Thesis, University of Arkansas, Fayetteville, U.S.A., 2006.
  • 7. Frickhinger H. On the present condition of the silk culture in Germany. Sci Nat 1916; 4: 841-844.
  • 8. Bajaj P, Paliwal DK Gupta AK. Modification of acrylic fibres for specific end uses. Indian J Fibre Text 1996; 21(2): 143-154.
  • 9. Kuroda D. The effect of warm air combined with high-frequency drying of cocoon. Silk Study 1953; 4: 58-63.
  • 10. Mujumdar AS, Mccormick PY. Drying of solids: recent international developments. Drying Technology 1987; 5(2): 287-296.
  • 11. Halliyal VG, Dandin SB and Somashekar TH. Evaluation of different methods of solid waste disposal in silk reeling industry. Indian J Fibre Text 1999; 24(2):115-119.
  • 12. Kaitsuka Y, Goto H. Synthesis of conductive silk composites. FIBRES & TEXTILES in Eastern Europe 2017; 25, 1(121): 17-22.
  • 13. Raza ZA, Anwar F. Low-formaldehyde hydrophobic cum crease resistant finishing of woven silk fabric. FIBRES & TEXTILES in Eastern Europe 2015; 23, 6(114): 116-119.
  • 14. Kutateladze SS and Borischanskij VM. Handbook on heat transfer. Moscow: Gosenergoizdat, Leningrad, 1959, p. 100.
  • 15. Gerzhoy AP and Samochetov VF. Zernosushenie i zernosushilki. Moscow: Kolos, 1967, p. 80.
  • 16. Ginsburg A. authored, Gao KY. translated.. Food drying theory and technology base. Beijing: Light Industry Press, 1986, p. 617.
  • 17. Kamei S and Towei R. Drying of Pasty Materials. Chemical Engineering 1950; 14(3): 101-104.
  • 18. Towei R, Hiraoka M and Sasano T. Studies on through-flow drying of viscose staple fibers. Kagaku Kogaku Ronbunhshu 1958; 22(5): 277-280.
  • 19. Chen JX, Chen JY and Chen SR. (1989). On flow field and its influence on temperature distribution. Journal of Zhejiang Institute of Silk Textiles 1989; 6(3): 5-9.
  • 20. Xu S. Drying treatment of siloworm cocoons as related to their quality. Newsletter of Sericultural Sci 2003; 23 (1): 50-52.
  • 21. Lu SH. (2007). New technology and its application in cocoon dying. Silk 2007; 4: 42-44.
  • 22. Hu ZZ, Wu JM, He GZ and Zhao MK. Issues and stratagem of cocoon drying faced with the state environmental protection requirements. North Sericulture 2008; 29(1): 37-38.
  • 23. Xu FM and Li YY. Discussion on the influence of cocoon drying technology condition on cocoon silk performance. Jiangsu Sericulture 1996; 3: 7-12.
  • 24. Feng JS. Discussion on cocoon drying theory and the conception of technology innovation. Sichuan Silk 2000; 4: 13-18.
  • 25. Sun B, Liu XR and Wu MT. The development status and trend of the drying the cocoon: Innovative agriculture engineering technology to promote the development of modern agriculture. in: Proceedings of Chinese Society of Agricultural Engineering 2011 Annual Conference, 22-24 October, Chongqing, CN, pp.125-129.
  • 26. Usub T, Lertsatitthanakorn C, Poomsa-Ad N, Wiset L, Yang L and Siriamorpun S. Experimental performance of a solar tunnel dryer for drying silkworm pupae. Biosyst Eng 2008; 101(2): 209216.
  • 27. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM and Pandit AB. A critical review on textile waste water treatments: Possible approaches. Journal of Environmental Management 2016; 182(1): 351-366.
  • 28. Broman B. Silk brocade weaving in northeastern Thailand (overview including photographs). Arts of Asia 2004; 34: 129-134.
  • 29. Lu XM, Sun YT, Chen Z and Gao YF. A multi-functional textile that combines self-cleaning, water-proofing and VO2-based temperature-responsive thermoregulating. Solar Energy Materials and Solar Cells 2017; 159: 102-111.
  • 30. Montazer M and Nia ZK. Conductive nylon fabric through in situ snythesis of nano-silver: Preparation and characterization. Materials Science and Engeering: C 2015; 56: 341-347.
  • 31. Lu SH. Applied research of microwave technique in silkworm cocoons desiccation. Drying Technology & Equipment 2006; 4: 212-214.
  • 32. Wang R, Jiang W, Li S, Dong Y and Fu YQ. Application research on infrared drying in silk rereeling process. Text Res J 2012; 82 (13): 1329-1336.
  • 33. Chen SR, Chen JY and Mujumdar AS. A preliminary study of steam drying of silkworm cocoons. Drying Technology 1992; 10(1): 251-260.
  • 34. Liu CL, Yi ZL, Ang FS, Lin QS, Wang M, Wang L and Zhu BJ. Preliminary research of drying silkworm cocoon with solar energy. Science of Sericulture 2006; 32: 129-131.
  • 35. Singh PL. Silk cocoon drying in forced convection type solar dryer. Applied Energy 2011; 88(5): 1720-1726.
  • 36. Chen JX. Types and structural characteristics of cocoon drying machines. Silk 1992; 12: 57-58.
  • 37. Chen JX. Types and characteristics of stationary cocoon drying chamber, Silk 1993; 2: 57-58.
  • 38. Chen JX and Lei SY. (1994). Types and structural characteristics of push-type cocoon drying chamber. Silk 1994; 9: 47-49.
  • 39. Chen JX and Chen SR. The bound moisture of silkworm cocoon. Journal of Zhejiang Institute of Silk Textiles 1993; 10(2): 6-10.
  • 40. Chen JX, Chen SR and Chen JY. On pupa killing and temperature used in preheated period of cocoon drying. Journal of Zhejiang Institute of Silk Textiles 1992; 9(3): 10-14.
  • 41. Thangavel K, Palaniswamy PT and Kailappan R. Studies on stifling and drying of cocoons for longer storage. Dry Technology 1998; 16 (1-2): 369-75.
  • 42. Chen JX. Exploration and analysis of the influence of hot air temperature and humidity on the cocoon dying speed. Journal of Zhejiang Institute of Silk Textiles 1997; 14(1): 21-25.
  • 43. Kathari VP, Patil BG and Das S. An energy efficient re-reeling process for silk reeling industry to reduce deforestation. Indian J Fibre Text 2011; 36(1): 96-98.
  • 44. Chen JX. Modification of the heat generator of ZHE73-1 cocoon drying chamber. Journal of Zhejiang Institute of Silk Textiles 1986; 3(1): 11-18.
  • 45. Chen JX and Zhu YX. Discussion on the key technologies for improving the capacity of the cocoon dying. Science of Sericulture 1993; 19: 238-241.
  • 46. Wang LX, Chen QG, Lin F and Xu S. Study on the temperature and humidity in circular airheated cocoon drying machine branded chuanxi. Silk textile technology overseas 2008; 23(2): 8-9, 25.
  • 47. Fen XQ. The relationship of drying technology and mechanical property of raw silk in the first period of cocoons desiccation. Journal of Zhejiang Institute of Silk Textiles 1984; 1(4): 29-34.
  • 48. Peng SC. Hot air push-type chamber CZL84-1for cocoon drying stove. Silk 1988; 4: 25-26.
  • 49. Chen SR, Chen JY and Arun S. A preliminary study of steam drying of silkworm cocoons. Drying Technology 1992; 10(1): 251-260.
  • 50. Chen JY and Chen SR. Application of superheated steam in silkworm cocoon drying. Journal of Textile Research 1989; 10(12): 547-553.
  • 51. Fu YQ and Jin XD. The influence of superheated steam drying on cocoon quality. Journal of Zhejiang Institute of Silk Textiles 1993; 10(4): 19-23.
  • 52. Zou FZ, Mu ZM and Zhu LJ. Studies on the control of relative humidity during drying process of silkworm cocoon and relationship with water contents of the cocoon shells. Acta Sericologica Sinica 2001; 27(2): 131-135.
  • 53. Qi N and Chen QG. Study on interior temperature and humidity of a new hot air recycling cocoon dryer. Silk 2009; (5): 32-34.
  • 54. Zou FZ, Li WG and Mou ZM. Relationship of drying technology with cocoon body temperature during temperature increasing period. Acta Sericologica Sinica 2001; 27(3): 206-209.
  • 55. Chen JX and Ma DY. Temperature configuration of cocoon drying machines. Newsletter of Sericulture and Tea 1993; 3: 23-25.
  • 56. Chen CW, Ye BS and Chen SR. The relationship of temperature and quality of cocoon at the initial stage. Journal of Zhejiang Institute of Silk Textiles 1984; 1(2): 10-15.
  • 57. Chen JX. The relationship between temperature and quality of cocoon at the last stage. Journal of Zhejiang Institute of Silk Textiles 1986; 3(4): 5-10.
  • 58. Lin F. Study on the continuous measurement of temperature and relative humidity inside the circular air-heated cocoon drying machine. Ph.D. Thesis, Suzhou University, China, 2007.
  • 59. Yang YS, Xu ZW, Wang XY and Tong SF. Elementary experiment report on the influence of dry process on cocoon quality. Silk 2005; 6: 26-27.
  • 60. Wang LX. Measurement of temperature and humidity inside cocoon drying machines and study of their technics, Ph.D. Thesis, Suzhou University, China, 2008.
  • 61. Li FC, Chen QG, Meng K, Zhang X and Wei WZ. Consecutive and dynamic measuring system of cocoon drying temperature and humidity and its practical application., Silk 2011; 48: 21-23, 31.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e44d09-afd9-4982-b72b-47c52e9e73af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.