PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pattern Selection in the Frame of Thermodynamic Similarity between Eutectics: Cu-Cu2O and (Zn)-Zn16Ti – Experiment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coagulation and solidification of the copper droplets suspend in the liquid slag are usually accompanied by the appearance of the Cu-Cu2 O eutectic. Locally, this eutectic is created in the stationary state. Therefore, frequently it has a directional morphology. Since the E = (Zn) + Zn16 Ti – eutectic is similar in the asymmetry of the phase diagram to the Cu-Cu2 O – eutectic, the (Zn) single crystal strengthened by the E = (Zn) + Zn16 Ti precipitate is subjected to directional growth by the Bridgman’s system and current analysis. Experimentally, the strengthening layers (stripes) are generated periodically in the (Zn) – single crystal as a result of the cyclical course of precipitation which accompanies the directional solidification. These layers evince diversified eutectic morphologies like irregular rods, regular lamellae, and regular rods. The L – shape rods of the Zn16 Ti – intermetallic compound appear within the first range of the growth rates when the irregular eutectic structure is formed. Next, the branched rods transform into regular rods and subsequently the regular rods into regular lamellae transitions can be recorded. The regular lamellae exist only within a certain range of growth rates. Finally, the regular rods re-appear at some elevated growth rates. The entropy production per unit time and unit volume is calculated for the regular eutectic growth. It will allow to formulate the entropy production per unit time for both eutectic structure: rod-like and lamellar one.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Kraków, ul. Reymonta 25, Poland
Bibliografia
  • [1] G. Boczkal, Materials Science Forum 674, 245-249 (2011).
  • [2] W. Wołczyński, B. Mikułowski, G. Boczkal, Materials Science Forum 649, 125-130 (2010).
  • [3] W. Wołczyński, International Journal of Thermodynamics 13, 35-42 (2010).
  • [4] W. Wołczyński, Archives of Metallurgy and Materials 58, 309-313 (2013).
  • [5] N. F. Mott, F. R. N. Nabarro, Proceedings of the Physical Society 52, 86-89 (1940).
  • [6] A. Kelly, M. E. Fine, Acta Metallurgica 5, 365-367 (1957).
  • [7] D. Dew-Huges, W. D. Robertson, Acta Metallurgica 8, 147 -155 (1960).
  • [8] J. G. Byrne, M. E. Fine, A. Kelly, Philosophical Magazi ne 6, 1119-1145 (1961).
  • [9] R. Ebeling, M. F. Ashby, Philosophical Magazine 13, 805-834 (1966).
  • [10] N. Zarubova, B. Sestak, Physica Status Solidi 30, 365-374 (1975).
  • [11] J.L. Murray, Phase Diagram of Binary Titanium Alloys, Ed. ASM International, Metals Park, Ohio, 336-339 (1987).
  • [12] L. Schramm, G. Behr, W. Loser, K. Wetzig, Journal of Phase Equilibria and Diffusion 26, 605-612 (2005).
  • [13] G. Boczkal, Archives of Metallurgy and Materials 58, 1019-1022 (2013).
  • [14] W. Wołczyński, Back-Diffusion Phenomenon during the Crystal Growth by the Bridgman Method, chapter 2 in the book: Modelling of Transport Phenomena in Crystal Growth, Ed. J.S. Szmyd & K. Suzuki; WIT Press: Southampton/UK – Boston/USA, 19-59 (2000).
  • [15] S. Khan, A. Ourdjini, R. Elliott, Materials Science and Technology 8, 516-524 (1992).
  • [16] B. Toloui, A. Hellawell, Acta Metallurgica 24, 565-573 (1976).
  • [17] W. Wołczyński, Defect and Diffusion Forum 272, 123-138 (2007).
  • [18] R.S. Fidler, M.N. Crocker, R.W. Smith, Journal of Crystal Growth 13/14, 739-746 (1972).
  • [19] G. Lesoult, Journal of Crystal Growth 13/14, 733-738 (1972).
  • [20] P. Glansdorff, I. Prigogine, Physica 30, 351-374 (1964).
  • [21] S. Kjelstrup, D. Bedeaux, Non-Equilibrium Thermodynamics of Heterogeneous Systems. World Scientific Publishing Co. Ltd., Ed. M. Rasetti, New Jersey/USA – London/UK – Singapore – Beijing; Shanghai/China – Hong-Kong – Taipei/Taiwan – Chennai/India, (2008).
  • [22] G. Lesoult, M. Turpin, Memoires Scientifiques de la Revue de Metallurgie 66, 619-631 (1969).
  • [23] P. Glansdorff, I. Prigogine, Physica 46, 344-366 (1970).
  • [24] I. Prigogine, Introduction a la Thermodynamique des Processus Irreversibles, Monographies DUNOD, Paris/France, (1968).
  • [25] A. Krupkowski, Fundamental Problems of the Theory for Metallurgical Processes, PWN, Warszawa/Poland, (1974).
  • [26] W. Kurz, D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications Ltd, Uetikon-Zuerich/Switzerland, (1998).
  • [27] W. Wołczyński, Crystal Research and Technology 25, 1433-1437 (1990).
Uwagi
EN
1. The support was provided by the National Center for Research and Development under Grant No. PBS3/A5/45/2015. The assistance of Professor G. Boczkal – AGH University of Science and Technology, Kraków, is greatly appreciated.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e413fd-ef1f-436b-aed0-68f839357569
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.