PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cellular-automata based modeling of heterogeneous biofilm growth for microbiological processes with various kinetic models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study concerns modeling and simulation of the growth of biofilms with heterogeneous structureswith a discrete mathematical model based on theory of cellular automata. The article presents two-dimensional density distributions of biofilms for microbial processes: oxidation of ammonium byNitrosomonas europaeabacteria and glucose utilization byPseudomonas aeruginosabacteria. Theinfluence of limiting substrate concentration in the liquid phase on biofilm structure was determined.It has been shown that the value of death rate coefficient of microorganisms has the qualitative andquantitative influence on the density and porosity of the biofilm.
Rocznik
Strony
145–--155
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Department of Chemical and Process Engineering,ul. Warszawska 24, 30-155 Kraków, Poland
Bibliografia
  • 1. Anguige K., King J.R., Ward J.P., 2005. Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population.J. Math. Biol., 51, 557–594. DOI: 10.1007/s00285-005-0316-8.
  • 2. Bakke R., Trulear M.G., Robinson J.A., Characklis W.G., 1984. Activity of Pseudomonas aeruginosain biofilms:Steady state.Biotechnol. Bioeng., 26, 1418–1424. DOI: 10.1002/bit.260261204.
  • 3. Beyenal H., Chen S.N., Lewandowski Z., 2003. The double substrate growth kinetics ofPseudomonas aeruginosa.Enzyme Microb. Technol., 32, 92–98. DOI: 10.1016/S0141-0229(02)00246-6.
  • 4. de Beer D., Stoodley P., 1995. Relation between the structure of an aerobic biofilm and transport phenomena.WaterSci. Technol., 32, 11–18. DOI: doi:10.1016/0273-1223(96)00002-9.
  • 5. Duddu R., Chopp D.L., Moran B., 2009. A two-dimensional continuum model of biofilm growth incorporatingfluid flow and shear stress based detachment.Biotechnol. Bioeng., 103, 92–104. DOI: 10.1002/bit.22233.
  • 6. Flint S.H., Brooks J.D., Bremer P.J., 2000. Properties of the stainless steel substrate, influencing the adhesion ofthermo-resistant streptococci.J. Food Eng., 43, 235–242. DOI: 10.1016/S0260-8774(99)00157-0.
  • 7. Kreft J., Picioreanu C., Wimpenny J.W.T., van Loosdrecht M.C.M., 2001. Individual-based modelling of biofilms.Microbiol., 147, 2897–2912. DOI: 10.1099/00221287-147-11-2897.
  • 8. Kułakowski K., 2000.Automaty komórkowe. OEN AGH, Kraków.
  • 9. Kumar A., Kumar S., Kumar S., 2005. Biodegradation kinetics of phenol and catechol usingPseudomonas putidaMTCC 1194.Biochem. Eng. J., 22, 151–159. DOI: 10.1016/j.bej.2004.09.006.
  • 10. Peyton B.M., 1996. Effects of shear stress and substrate loading rate onPseudomonas aeruginosabiofilm thicknessand density.Water Res., 30, 29–36. DOI: 10.1016/0043-1354(95)00110-7.
  • 11. Picioreanu C., van Loosdrecht M.C.M., Heijnen J.J., 1998a. A new combined differential-discrete cellular automatonapproach for biofilm modeling: application for growth in gel beads.Biotechnol. Bioeng., 57, 718–731. DOI:10.1002/(SICI)1097-0290(19980320)57:6<718::AID-BIT9>3.0.CO;2-O.
  • 12. Picioreanu C., van Loosdrecht M.C.M., Heijnen J.J., 1998b. Mathematical modeling of biofilm structure with ahybrid differential-discrete cellular automaton approach.Biotechnol. Bioeng., 58, 101–116. DOI: 10.1002/(sici)1097-0290(19980405)58:1<101::aid-bit11>3.0.co;2-m.
  • 13. Robinson J.A., Trulear M.G., Characklis W.G., 1984. Cellular reporoduction and extracellular polymer forma-tion byPseudomonas aeruginosain continuous culture.Biotechnol. Bioeng., 26, 1409–1417. DOI: 10.1002/bit.260261203.
  • 14. Skoneczny S., 2015. Cellular automata-based modelling and simulation of biofilm structure on multi-core comput-ers.Water Sci. Technol., 72, 2071–2081. DOI: 10.2166/wst.2015.426.
  • 15. Skoneczny S., 2017. Cellular automata as an effective tool for modelling of biofilm morphology.Environ. Prot.Eng., 43, 4, 177–190. DOI: 10.5277/epe170414.
  • 16. Stewart P.S., Peyton B.M., Drury W.J., Murga R., 1993. Quantitative observations of heterogeneities in Pseudomonasaeruginosa biofilms.Appl. Environ. Microbiol., 59, 327–329.
  • 17. Tijhuis L., Van Loosdrecht M.C.M., Heijnen J.J, 1994. Formation and growth of heterotrophic aerobic biofilms onsmall suspended particles in airlift reactors.Biotechnol. Bioeng., 44, 595–608. DOI: 10.1002/bit.260440506.
  • 18. Wijeyekoon S., Mino T., Satoh H., Matsuo T., 2004. Effects of substrate loading rate on biofilm structure.WaterRes., 38, 2479–2488. DOI: 10.1016/j.watres.2004.03.005.
  • 19. Wijffels R.H., Schepers A.W., Smit M., de Gooijer C.D., Tramper J., 1994. Effect of initial biomass concentration on the growth of immobilizedNitrosomonas europaea.Appl. Microbiol. Biotechnol., 42, 153–157. DOI:10.1007/BF00170239.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e2f0a2-eb35-4065-a883-46c013db28c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.