
INFORMATION
SYSTEMS IN

MANAGEMENT

Information Systems in Management (2018) Vol. 7 (4) 227−236

DOI: 10.22630/ISIM.2018.7.4.20

TOWARDS THE DATA STRUCTURE FOR EFFECTIVE
WORD SEARCH

WALDEMAR KARWOWSKI, PIOTR WRZECIONO

Department of Informatics, Warsaw University of Life Sciences (SGGW)

In the paper problem of searching basic forms for words in the Polish language is
discussed. Polish language has a very extensive inflection and effective method for
finding base form is important in many NLP tasks for example text indexing. The
method for searching, based on open-source dictionary of Polish language, is
presented. In this method it is important to design a structure for storing all words
from dictionary, in such a way that it allows to quickly find basic words forms. Two
dictionary structures: ternary search tree and associative table are presented and
discussed. Tests are performed on the six actual and three crafted artificial texts and
results are compared with other possible dictionary structures. At the end
conclusions about structures effectiveness are formulated.

Keywords: Text Indexing, Associative Array, Ternary Search Tree

1. Introduction

Today, English is the dominant language not only in the Internet but also in
many areas, primarily connected with science and technology. However, at the
same time, the national languages are commonly used and generally the number of
published documents is increasing. A huge number of documents prevents person
from viewing them directly. Automatic analysis of the texts can help in reviewing
big sets of documents. Especially text indexing is an important issue today, it helps
to organize documents and it is widely applicable in knowledge management. Dur-
ing indexing, the very important task is to reduce inflectional and derivationally

228

related forms of a word to a common base form. The process of reducing words to
their base or root form is possible with stemming algorithms. The Polish language
has a very extensive inflection and stemming is not an easy task in this situation.
Effective stemming algorithms are designed for English, but they are not useful in
Polish. Review of stemmers for Polish language is made in [10]. There are availa-
ble two stemmer tools: Stempel [9] - algorithmic stemmer for Polish language and
Morfologik [7] - morphosyntactic dictionary for the Polish language, which has the
stemmer tool. The problem of automatic text indexing in agriculture domain, for
documents in Polish language, was discussed by authors in [3, 4, 11]. Because dic-
tionaries in Morfologik or Stempel were not big and integration with our system
was not easy, we designed special custom method. We have to note that generally
stemming extracts rather root that base form, but for our goals we need very simple
stemming just finding base form for word. Our method involves use an open-
source dictionary of Polish language [8]. This dictionary is an open project licensed
under the GPL and CC SA licenses. It is continuously updated and contains more
than 200000 records. Every record consists of base form and all inflected forms
derived from it. We prepared collection of all words with pointers to base form; as
a result, we can easily find the base form for any word. The basic problem is effec-
tive search for words in the collection, because we have together almost 4 million
words. Simple method involves storing sorted words in a huge array together with
pointers to base form and using the binary search. This method was applied in
[3, 4, 11], it is memory consuming but works quite well. To improve searching we
need more specialized structures than sorted array. Dictionary structure based on a
trie was presented and tested in [5]. The primary disadvantage of trie structure is
huge amount of needed RAM memory. In this paper we want to present two other
structures: ternary search tree (TST) and custom dictionary based on associative
array, which requires much less memory than trie and at the same time ensures rel-
atively high efficiency. Main goal of the research was to implement, test and com-
pare search efficiency for all mentioned structures. The results allow us to design
and implement the best dictionary for the indexing task.

The rest of this paper is organized as follows: in Sect. 2 the dictionary struc-
ture based on a ternary search tree is presented and discussed. In Sect. 3 the associ-
ative array is shortly described. In Sect. 4 subsequently testing results for sorted
list, trie, TST and associative array based on hash table are presented and dis-
cussed. Summary and final remarks are formulated in Sect. 5.

2. Dictionary structure based on a ternary search tree

In [5] we presented that a subsequent search of words in a sorted array, which
contains almost four million items, takes some time, but the structure based on the
trie makes the same task many times faster. The main disadvantage of structure

229

based on trie is its huge size in memory. The ternary search tree is a kind of search
tree where nodes are arranged in a manner similar to a binary search tree, but with
three children: left, middle and right. Similarly to trie, each node in the TST stores
only one character (a part of key) [1]. The left child stores character value which is
less than the character in the current node. The right child stores character which is
greater than the character in the current node. Middle child stores next character in
the word. Additionally each node stores flag which denotes possible end of word.
In other words each node in a ternary search tree represents a prefix of the stored
strings. All strings in the middle subtree of a node start with that prefix.

Figure 1. Words with the common prefix in TST

In the Fig. 1 ternary search tree for words: z, ziąb, ziem, ziemi, ziemia, ziemią,

ziemniak, ziemniaka, ziemniaki, zim, and zima, is presented. The thick line is used
for nodes which are the end of the word. For example node e represents prefix zie,
node n represents prefix ziemn. Because we compare Unicode values of characters,

230

value of the letter ą (0105 in hex) is bigger than value of the letter e (0065 in hex)
what we can see in the Figure 1. We can compare unicodes because in searching,
unlike in sorting, order of letters in the Polish alphabet is not important. Moreover
we have to note that TST unlike trie depends on order of adding words. The dic-
tionary based on TST allows to store big and small letters, which make possible to
distinguish own names. In structure based on trie, such situation almost doubled
size of every node which significantly increases its size in memory.

3. Custom associative array structure based on hash table

An associative array is a known data structure based on key/value pairs. The
associative array has a set of keys and each key has a single associated value. For
presented key, the associative array will return the associated value. An associative
array is also called a map or a dictionary. Associative arrays are often implemented
based on hash tables [2, 6]. There are many ready implementations of associative
arrays in many programming languages, especially in Java or .NET libraries.

In our situation we have pairs (word, index) where index means index in table
with indexes to base forms table. Of course word is a key and index is a value. We
have to note that we cannot immediately points to base forms table, we need addi-
tional table with indexes to base forms table, because in Polish language we have
many homographs. For example word mają has possible base forms: maić (verb),
mieć (verb) or maja (noun - Lithodes maja). This additional table was implemented
also in dictionary implementation based on trie described in [5].

To store hashed keys we prepared huge table with size over 4 million cells
(i.e. bigger than number of words), we chosen 7199369 because it is prime number.
For every word we count hash code in the interval [0, 7199368]. In other words at
the last step of counting hash code for a given word, we take hash(word) as
hash(word) mod 7199369. Such code hash(word) is taken as an index in the table,
but cell value is additional index to array which stores pairs (word, index). Because
it may happen that a few words have the same hash code (i.e. we have conflict),
from this reason array which stores pairs (word, index) has additional attribute next
i.e. it stores triples (word, index, next). Attribute next points to next cell where
word has the same hash code.

231

Figure 2. Association array based on hash table

In the Fig. 2 indexes in the table S are hash codes, for example h1 = hash(w1),
h2=hash(w2), h2 = hash(w3) and h2 = hash(w4). Table B stores triples (word, in-
dex, next). Hash code h1 is unique, it points to triple at index i in the table P it is
(w1, i1, -1). Index i1 points to the table with indexes to base forms table, but in this
situation, attribute next in this triple is equal -1 (it denotes that we have not next
words with the same hash code). Hash code h2 is not unique, in such situation j
points to the first word w1 (i.e. triple with word w1) with hash code h2 in the table
P it is (w2, i2, k). Index i2 points to the table with indexes to base forms table, but
attribute next has value k. It means it points to the next word w3 with the hash code
h2. Analogously next attribute has value l and points to third word with hash code
h2 i.e. w4. Because we have not more words with hash code h2, triple (w4, i4, -1)
has attribute next equals -1, it means that it was last word with hash code h2.

In other words we can say that to every cell in table S we attach list (chain) of
pairs (word, index). We have to note that table S is huge to reduce to minimum
number of conflicts. Average performance for associative array is constant, but
maximum number of conflicts sets a worst-case performance.

4. Comparing effectiveness of dictionary structures

As in [5] our application was implemented in C#. There are 204050 base
forms and total 3953809 words in dictionary [8], but without homographs we have
3801058 different words. We prepared six versions of our application based on:
sorted array, trie structure, TST, associative array, .NET Dictionary class and .NET
HashSet class. The first two versions were tested in [5], we tested them again be-
cause they were slightly improved in comparison with [5]. The following two ver-
sions are based on structures described in the previous sections, the last two ver-
sions based on .NET Framework 4.7.2. We tested applications based on Dictionary

232

and HashSet classes because they are very similar to our implementation of associ-
ative array.

First we measured amount of RAM memory needed to store whole dictionary
structures. Dictionary with sorted array of strings takes about 150MB of RAM
memory, dictionary with trie structure takes more than 1.1GB of RAM memory,
dictionary structure based on TST takes about 250MB of RAM memory, our asso-
ciative array takes about 200MB of RAM memory, dictionary based on .NET Dic-
tionary class takes about 250MB of RAM memory, similarly solution based on
.NET HashSet class.

Next we prepared to measure average performance (time complexity) of
searching in our applications. Theoretically binary search is equivalent to searching
in balanced binary search tree and average performance is O(log n) where n is the
number of words (log2 3953809 = 21,9148117485834 ≈ 22). For binary search
standard Array.BinarySearch method from .NET library was used. In trie structure
searching performance does not depend on number of words, it depends on longest
word (i.e. number of characters). In our dictionary [1] this number is 39
(niedziewięćdziesięciopięcioipółletniego), of course average performance is O(1).
For TST structure average performance is O(log n) and worse O(n), but many de-
pends on words and their order. In our case deepest branch of TST is 106. Of
course it is bigger than 22 for binary search but in TST every time we compare on-
ly one pair of characters but for binary search pair of whole words. Associative
array has constant searching performance O(1). Many depends on longest chain of
words with the same hash code, in our situation this number is 6, and we have
2953044 different hash codes which means that most often we have only one ele-
ment chain. In associative array we used standard .NET method GetHashCode()
defined for strings, obtained value is taken without sign and modulo 7199369. For
.NET Dictionary and HashSet searching performance is O(1). We have to add that
for HashSet we had to defined EqualityComparer class and defined method
GetHashCode() (for pair (word, index) we take word.GetHashCode()).

To practically compare the search results of two dictionary structures, we se-
lected several publications from Agricultural Engineering Journal (Inżynieria
Rolnicza) exactly the same that were used in the paper [5]. “Text A” is “Infor-
mation system for acquiring data on geometry of agricultural products exemplified
by a corn kernel”; “Text B” is “Assessment of the operation quality of the corn
cobs and seeds processing line”; “Text C” is “Methodological aspects of measuring
hardness of maize caryopsis”; “Text D” is “Evaluation of results of irrigation ap-
plied to grain maze”; “Text E” is “Extra corn grain shredding and particle breaking
up as a method used to improve quality of cut green forage”; and “Text F” is “
Comparative assessment of sugar corn grain acquisition for food purposes using
cut off and threshing methods”. Additionally, we have prepared three “artificial”
texts. “Text X” contains two thousand times word contains; this word is not present

233

in the Polish language dictionary. “Text Y” contains two thousand times word
niewybielały and “Text Z” contains two thousand times word niewybielałych.

The results of the test are presented in Table 1 – Table 9, similarly like in [5].
In the header we put the number of words in the particular text. The measure is the
number of processor ticks. Every test was taken two times: for one thousand loops,
and ten thousand loops. The reason is that .NET Just In Time compiler prepares
methods before the first run, if we run method next time, compiled method code is
in memory. The result is influenced by a certain overhead during the first loop, it is
something like overhead_tics + n * tics_for_one_loop. For bigger n we can better
estimate average number of tics for one loop taking ratio tics/number of loops. Of
course from many reasons, connected with .NET environment, number of tics can
differ between two runs, but differences are not significant. We did the tests many
times for every case and the results differed insignificantly.

Table 1. Text A (1655 words)

Number
of loops

Binary
search

Trie
search

TST
search

Associative
array

NET Dic-
tionary

NET
HashSet

1000 33591897 342741 975962 160745 292288 243338
10000 316131531 3485992 9736250 1563227 2887232 2432310

Table 2. Text B (2622 words)
Number
of loops

Binary
search

Trie
search

TST search Associative
array

NET Dic-
tionary

NET
HashSet

1000 53222999 500002 1355375 250009 469488 394600
10000 467090971 5009019 13488726 2452428 4665948 3940382

Table 3. Text C (2286 words)
Number
of loops

Binary
search

Trie
search

TST search Associative
array

NET Dic-
tionary

NET
HashSet

1000 45597531 429401 1190847 213183 397152 331165
10000 406983513 4248994 11779211 2072389 3870395 3284391

Table 4. Text D (1429 words)
Number
of loops

Binary
search

Trie
search

TST
search

Associative
array

NET Dic-
tionary

NET
HashSet

1000 28353564 250092 725084 130667 232243 211289
10000 256743505 2509729 7216749 1279460 2294568 2044434

234

Table 5. Text E (1618 words)
Number
of loops

Binary
search

Trie
search

TST
search

Associative
array

NET Dic-
tionary

NET
HashSet

1000 32357241 327902 894725 158679 292624 240832
10000 307635139 3255707 8889389 1543999 2928692 2422897

Table 6. Text F (1963 words)
Number
of loops

Binary
search

Trie
search

TST search Associative
array

NET Dic-
tionary

NET
HashSet

1000 39847235 356195 1097629 178936 323735 281710
10000 353018299 3530443 10278696 1739347 3182355 2787582

Table 7. Text X (2000 words)
Number
of loops

Binary
search

Trie
search

TST search Associative
array

NET Dic-
tionary

NET
HashSet

1000 48424413 331754 1600371 101902 114812 205132
10000 459046035 3411198 16180765 1038634 1145758 2000187

Table 8. Text Y (2000 words)
Number
of loops

Binary
search

Trie
search

TST search Associative
array

NET Dic-
tionary

NET
HashSet

1000 4884409 664130 1606728 224155 434106 331085
10000 48845906 6727924 16121447 2087378 4192262 3161444

Table 9. Text Z (2000 words)
Number
of loops

Binary
search

Trie
search

TST search Associative
array

NET Dic-
tionary

NET
HashSet

1000 55643747 750973 1708222 262994 437585 332897
10000 503264504 7589691 17459160 2601833 4290230 3261948

We summarized all results in the Table 10, taking approximate number of tics,
leaving only two important digits, to show general tendency. We can observe that
searching results with associative array are the best. Anyway they are comparable
with versions based on .NET structures: Dictionary and HashSet. Version based on
trie is about 2 times slower, but still comparable with associative array. Searching
with TST is significantly slower, about 15 times. This confirmed our previous theo-
retical considerations. Binary search is very slow regarding to all other methods,
for example associative array is more than 200 times faster than binary search. We
can observe that for example for texts D and E the TST searching was relatively
slow, it means the tree structure affects search time. For associative array and .NET

235

structures results are rather proportional to number of words in tested text. In this
situation results for text X, word contains hash code not presented in dictionary and
negative result is obtained immediately.

Table 10. Approximate number of tics for one loop

Text Binary
search

Trie
search

TST search Associative
array

NET Dic-
tionary

NET
HashSet

A 31000 340 970 160 290 240
B 46000 500 1300 250 460 390
C 40000 420 1100 200 380 320
D 25000 250 7200 130 230 200
E 30000 320 8800 150 290 240
F 35000 350 1000 170 320 280
X 45000 340 1600 100 110 200
Y 48000 670 1600 200 420 310
Z 50000 750 1700 260 430 330

5. Conclusions and future work

We examined six dictionary structures for text analysis in particular for index-
ing text. Tests have shown that the structure based on the associative array makes
searching faster than other structures. Five structures but trie utilize similar amount
of RAM memory. For our purpose dedicated association table is the best choice. If
somebody does not want to implement dedicated structure classes from .NET li-
brary are relatively good. However, the trie structure and TST are still useful in
tasks such word completion or error correction. Trie is very good choice if we have
limited dictionary, for dictionaries like [8] the better choice for mentioned tasks is
TST which compromises the advantage of fast completion and reasonable RAM
amount. The main conclusion is that our application should be developed based on
associative array but parallel version with trie structure can be useful in special task
like morphology study.

REFERENCES

[1] Bentley J., Sedgewick R., (1998) Ternary Search Trees. Dr. Dobbs Journal April,
1998

[2] Cormen, T. H., Leiserson, C. E.; Rivest, R. L.; Stein, C., (2001), Chapter 11 Hash
Tables, Introduction to Algorithms (2nd ed.), MIT Press and McGraw-Hill

[3] Karwowski W., Wrzeciono P., (2014) Automatic indexer for Polish agricultural texts.
Information Systems in Management 2014, Vol. 3, nr 4, pp. 229-238

236

[4] Karwowski W., Wrzeciono P., (2017) Methods of automatic topic mining in publica-
tions in agriculture domain. Information Systems in Management 2016, Vol. 6 (3) pp
192-202

[5] Karwowski W., Wrzeciono P., (2017) The dictionary structure for effective word
search. Information Systems in Management 2017, Vol. 6, (4), s. 284-293

[6] Mehlhorn, K., Sanders, P. (2008), Chapter 4 Hash Tables and Associative Arrays,
Algorithms and Data Structures: The Basic Toolbox, Springer

[7] Morphosyntactic dictionary for the Polish language https://github.com/morfologik/

[8] Polish language dictionary, http://www.sjp.pl

[9] Stempel - Algorithmic Stemmer for Polish Language http://getopt.org/stempel/

[10] Weiss D. (2005) A Survey of Freely Available Polish Stemmers and Evaluation of
Their Applicability in Information Retrieval. 2nd Language and Technology Confer-
ence, Poznań, Poland, pp. 216-221

[11] Wrzeciono P., Karwowski W. (2013) Automatic Indexing and Creating Semantic
Networks for Agricultural Science Papers in the Polish Language, Computer Soft-
ware and Applications Conference Workshops (COMPSACW), 2013 IEEE 37th An-
nual, Kyoto

