INFORMATION . .
SYSTEMS IN Information Systems in Management (2018) Vol.)’ 227236

MANAGEMENT DOI: 10.22630/1SIM.2018.7.4.20

TOWARDS THE DATA STRUCTURE FOR EFFECTIVE
WORD SEARCH

WALDEMAR KARWOWSKI, PIOTR WRZECIONO

Department of Informatics, Warsaw University okeL8ciences (SGGW)

In the paper problem of searching basic forms fords in the Polish language is
discussed. Polish language has a very extensilexiioh and effective method for
finding base form is important in many NLP tasks édaample text indexing. The
method for searching, based on open-source dictiond Polish language, is
presented. In this method it is important to desgstructure for storing all words
from dictionary, in such a way that it allows toiakly find basic words forms. Two
dictionary structures: ternary search tree and ciestbee table are presented and
discussed. Tests are performed on the six actabtrare crafted artificial texts and
results are compared with other possible dictionatguctures. At the end
conclusions about structures effectiveness areutated.

Keywords: Text Indexing, Associative Array, Tern&garch Tree

1. Introduction

Today, English is the dominant language not onlthim Internet but also in
many areas, primarily connected with science awctinelogy. However, at the
same time, the national languages are commonly aiseédyenerally the number of
published documents is increasing. A huge numbeloctiments prevents person
from viewing them directly. Automatic analysis diettexts can help in reviewing
big sets of documents. Especially text indexingrismportant issue today, it helps
to organize documents and it is widely applicabhl&nowledge management. Dur-
ing indexing, the very important task is to reduciectional and derivationally

related forms of a word to a common base form. diioeess of reducing words to
their base or root form is possible with stemmifgpathms. The Polish language
has a very extensive inflection and stemming isameasy task in this situation.
Effective stemming algorithms are designed for Eglbut they are not useful in
Polish. Review of stemmers for Polish language aslenin [10]. There are availa-
ble two stemmer tools: Stempel [9] - algorithmiersier for Polish language and
Morfologik [7] - morphosyntactic dictionary for tHeolish language, which has the
stemmer tool. The problem of automatic text indgxim agriculture domain, for
documents in Polish language, was discussed byiauith [3, 4, 11]. Because dic-
tionaries in Morfologik or Stempel were not big aintkegration with our system
was not easy, we designed special custom methochaMe to note that generally
stemming extracts rather root that base form, @wud@r goals we need very simple
stemming just finding base form for word. Our methavolves use an open-
source dictionary of Polish language [8]. Thisidicary is an open project licensed
under the GPL and CC SA licenses. It is continuougldated and contains more
than 200000 records. Every record consists of fase and all inflected forms
derived from it. We prepared collection of all wendith pointers to base form; as
a result, we can easily find the base form forwaoyd. The basic problem is effec-
tive search for words in the collection, becauseharee together almost 4 million
words. Simple method involves storing sorted wanda huge array together with
pointers to base form and using the binary seafbis method was applied in
[3, 4, 11], it is memory consuming but works quitell. To improve searching we
need more specialized structures than sorted dbiationary structure based on a
trie was presented and tested in [5]. The primasgdiantage of trie structure is
huge amount of needed RAM memory. In this papemant to present two other
structures: ternary search tree (TST) and custatiodary based on associative
array, which requires much less memory than tribatrthe same time ensures rel-
atively high efficiency. Main goal of the reseamghs to implement, test and com-
pare search efficiency for all mentioned structufidee results allow us to design
and implement the best dictionary for the indetamsk.

The rest of this paper is organized as followsSatt. 2 the dictionary struc-
ture based on a ternary search tree is presentedissussed. In Sect. 3 the associ-
ative array is shortly described. In Sect. 4 subsetly testing results for sorted
list, trie, TST and associative array based on tiable are presented and dis-
cussed. Summary and final remarks are formulat&egaot. 5.

2. Dictionary structure based on a ternary searchree
In [5] we presented that a subsequent search alsaiara sorted array, which

contains almost four million items, takes some titmgt the structure based on the
trie makes the same task many times faster. The diaadvantage of structure

228

based on trie is its huge size in memory. The tgreearch tree is a kind of search
tree where nodes are arranged in a manner similatbinary search tree, but with
three children: left, middle and right. Similarly trie, each node in the TST stores
only one character (a part of key) [1]. The lefilatlstores character value which is
less than the character in the current node. e child stores character which is
greater than the character in the current nodedMidhild stores next character in
the word. Additionally each node stores flag whilemotes possible end of word.
In other words each node in a ternary search #peesents a prefix of the stored
strings. All strings in the middle subtree of a eaatart with that prefix.

Figure 1. Words with the common prefix in TST

In the Fig. 1 ternary search tree for worgzigh, ziem ziemij ziemig ziemg,
ziemniak ziemniaka ziemniakj zim, andzima is presented. The thick line is used
for nodes which are the end of the word. For examplde e represents prefixe,
node n represents prefoemn Because we compare Unicode values of characters,

229

value of the letteg (0105 in hex) is bigger than value of the lett€D@65 in hex)
what we can see in the Figure 1. We can comparddes because in searching,
unlike in sorting, order of letters in the Polidpteabet is not important. Moreover
we have to note that TST unlike trie depends orrood adding words. The dic-
tionary based on TST allows to store big and stattkrs, which make possible to
distinguish own names. In structure based on sueh situation almost doubled
size of every node which significantly increassssize in memory.

3. Custom associative array structure based on hashble

An associative array is a known data structure dasekey/value pairs. The
associative array has a set of keys and each ke Bingle associated value. For
presented key, the associative array will retuenabsociated value. An associative
array is also called a map or a dictionary. Asdo@aarrays are often implemented
based on hash tables [2, 6]. There are many reapleinentations of associative
arrays in many programming languages, especiallgua or .NET libraries.

In our situation we have pairs (word, index) whiegex means index in table
with indexes to base forms table. Of course wor key and index is a value. We
have to note that we cannot immediately pointsaselforms table, we need addi-
tional table with indexes to base forms table, beedn Polish language we have
many homographs. For example wondjg has possible base fornmmsai¢ (verb),
mie¢ (verb) ormaja(noun - Lithodes maja). This additional table waplemented
also in dictionary implementation based on triecdegd in [5].

To store hashed keys we prepared huge table vaéhasier 4 million cells
(i.e. bigger than number of words), we chosen 76998:cause it is prime number.
For every word we count hash code in the inter@alf/L99368]. In other words at
the last step of counting hash code for a givendware take hash(word) as
hash(word) mod 7199369. Such code hash(word) entalk an index in the table,
but cell value is additional index to array whit¢bres pairs (word, index). Because
it may happen that a few words have the same hadh @.e. we have conflict),
from this reason array which stores pairs (wordek) has additional attribute next
i.e. it stores triples (word, index, next). Attrtbunext points to next cell where
word has the same hash code.

230

. ////i;/////

SN RN

Figure 2. Association array based on hash table

In the Fig. 2 indexes in the table S are hash ¢ddesxample h1l = hash(wl),
h2=hash(w2), h2 = hash(w3) and h2 = hash(w4). TBbétores triples (word, in-
dex, next). Hash code h1 is unique, it points iadrat index i in the table P it is
(wl, i1, -1). Index i1 points to the table with exeés to base forms table, but in this
situation, attribute next in this triple is equal (it denotes that we have not next
words with the same hash code). Hash code h2 isimigtie, in such situation j
points to the first word wl (i.e. triple with wowdl) with hash code h2 in the table
P itis (w2, i2, k). Index i2 points to the tablélwindexes to base forms table, but
attribute next has value k. It means it pointdnext word w3 with the hash code
h2. Analogously next attribute has value | and {soio third word with hash code
h2 i.e. w4. Because we have not more words with lcasle h2, triple (w4, i4, -1)
has attribute next equals -1, it means that it kastsword with hash code h2.

In other words we can say that to every cell ing&we attach list (chain) of
pairs (word, index). We have to note that tables $iuge to reduce to minimum
number of conflicts. Average performance for assibe array is constant, but
maximum number of conflicts sets a worst-case pedoce.

4. Comparing effectiveness of dictionary structures

As in [5] our application was implemented in C#.efd are 204050 base
forms and total 3953809 words in dictionary [8]t lithout homographs we have
3801058 different words. We prepared six versiohsw application based on:
sorted array, trie structure, TST, associativeyarfdET Dictionary class and .NET
HashSet class. The first two versions were testg8]i we tested them again be-
cause they were slightly improved in comparisorh#]. The following two ver-
sions are based on structures described in theopegections, the last two ver-
sions based on .NET Framework 4.7.2. We testedcapipins based on Dictionary

231

and HashSet classes because they are very simibar implementation of associ-
ative array.

First we measured amount of RAM memory neededai@ sthole dictionary
structures. Dictionary with sorted array of strirtgkes about 150MB of RAM
memory, dictionary with trie structure takes madnart 1.1GB of RAM memory,
dictionary structure based on TST takes about 25@fBAM memory, our asso-
ciative array takes about 200MB of RAM memory, idicary based on .NET Dic-
tionary class takes about 250MB of RAM memory, &ny solution based on
.NET HashSet class.

Next we prepared to measure average performance (tiomplexity) of
searching in our applications. Theoretically binsgarch is equivalent to searching
in balanced binary search tree and average perfmenia O(log n) where n is the
number of words (log3953809 = 21,914811748583422). For binary search
standard Array.BinarySearch method from .NET lipnaas used. In trie structure
searching performance does not depend on numbeordss, it depends on longest
word (i.e. number of characters). In our dictiondfy] this number is 39
(niedziewgcédziesgciopiecioipOtetniegd, of course average performance is O(1).
For TST structure average performance is O(lognd)wsorse O(n), but many de-
pends on words and their order. In our case dedpasch of TST is 106. Of
course it is bigger than 22 for binary search huE$T every time we compare on-
ly one pair of characters but for binary search paiwhole words. Associative
array has constant searching performance O(1). Mapgnds on longest chain of
words with the same hash code, in our situatioa thimber is 6, and we have
2953044 different hash codes which means that oftest we have only one ele-
ment chain. In associative array we used standdiEd .method GetHashCode()
defined for strings, obtained value is taken withgign and modulo 7199369. For
.NET Dictionary and HashSet searching performaad@(ll). We have to add that
for HashSet we had to defined EqualityComparer sclasd defined method
GetHashCode() (for pair (word, index) we take wGetHashCode()).

To practically compare the search results of twati@hary structures, we se-
lected several publications from Agricultural Erggning Journal (lrynieria
Rolnicza) exactly the same that were used in theepfb]. “Text A” is “Infor-
mation system for acquiring data on geometry oicagiural products exemplified
by a corn kernel”; “Text B” is “Assessment of thperation quality of the corn
cobs and seeds processing line”; “Text C” is “Melblogical aspects of measuring
hardness of maize caryopsis”; “Text D” is “Evalaatiof results of irrigation ap-
plied to grain maze”; “Text E” is “Extra corn gnashredding and particle breaking
up as a method used to improve quality of cut gfeemge”; and “Text F” is “
Comparative assessment of sugar corn grain adquidiir food purposes using
cut off and threshing methods”. Additionally, wavie prepared three “artificial”
texts. “Text X" contains two thousand times wordhizins; this word is not present

232

in the Polish language dictionary. “Text Y” contitwo thousand times word
niewybielatyand “Text Z” contains two thousand times wardwybielatych
The results of the test are presented in Tabl@able 9, similarly like in [5].
In the header we put the number of words in théqaar text. The measure is the
number of processor ticks. Every test was takentimes: for one thousand loops,
and ten thousand loops. The reason is that .NETIduEime compiler prepares
methods before the first run, if we run method rtame, compiled method code is
in memory. The result is influenced by a certaierread during the first loop, it is
something likeoverhead_tics + n * tics_for_one_loopor bigger n we can better
estimate average number of tics for one loop takatigp tics/number of loops. Of
course from many reasons, connected with .NET enmient, number of tics can
differ between two runs, but differences are nghigicant. We did the tests many
times for every case and the results differed mfgantly.

Table 1. Text A (1655 words)

Number Binary Trie TST Associative | NET Dic- NET
of loops search search search array tionary HashSet
1000 33591897 342741 975962 160745 292p88 243338
10000| 316131531 3485992 9736250 1563227 2887232 23243
Table 2. Text B (2622 words)
Number Binary Trie TST search| Associativg NET Dic- NET
of loops search search array tionary HashSet
1000 53222999 500002 1355375 250009 469488 394600
10000 467090971 5009019 13488726 2452428 4665948 40332
Table 3. Text C (2286 words)
Number Binary Trie TST search| Associativg NET Dic- NET
of loops search search array tionary HashSet
1000 45597531 429401 1190847 213183 3971152 331165
10000 406983513 4248994 11779211 2072889 3870395 84332
Table 4. Text D (1429 words)
Number Binary Trie TST Associative | NET Dic- NET
of loops search search search array tionary HashSet
1000 28353564 25009p 725084 130667 232p43 211289
10000 2567435041 2509729 7216749 1279460 2294568 442a4

233

Table 5. Text E (1618 words)

Number Binary Trie TST Associative | NET Dic- NET
of loops search search search array tionary HashSet
1000 32357241 32790p 894725 158679 292624 240832
10000 307635134 3255707 8889389 1543999 2928692 28272
Table 6. Text F (1963 words)
Number Binary Trie TST search| Associativg NET Dic- NET
of loops search search array tionary HashSet
1000 39847235 35619p 1097629 178936 323735 281710
10000 353018294 3530443 102786196 1739847 3182355 87582
Table 7. Text X (2000 words)
Number Binary Trie TST search| Associativg NET Dic- NET
of loops search search array tionary HashSet
1000 48424413 331754 1600371 101902 114812 205132
10000 459046034 3411198 161807/65 1038634 114%758 00130
Table 8. Text Y (2000 words)
Number Binary Trie TST search| Associativg NET Dic- NET
of loops search search array tionary HashSet
1000 4884409 664130 1606728 224155 434106 331085
10000 48845906 6727924 16121447 2087378 4192262 14314
Table 9. Text Z (2000 words)
Number Binary Trie TST search| Associativg NET Dic- NET
of loops search search array tionary HashSet
1000 55643747 750978 1708222 262994 437p85 332897
10000 503264504 7589691 17459160 2601833 4290230 619338

We summarized all results in the Table 10, takimgreximate number of tics,
leaving only two important digits, to show geneteriddency. We can observe that
searching results with associative array are tis¢. Beryway they are comparable
with versions based on .NET structures: Dictioraamg HashSet. Version based on
trie is about 2 times slower, but still comparabith associative array. Searching
with TST is significantly slower, about 15 timei3 confirmed our previous theo-
retical considerations. Binary search is very slegarding to all other methods,
for example associative array is more than 2004gifaster than binary search. We
can observe that for example for texts D and ETiB& searching was relatively
slow, it means the tree structure affects seans.tFor associative array and .NET

234

structures results are rather proportional to nunolbevords in tested text. In this
situation results for text X, word contains hastecaot presented in dictionary and
negative result is obtained immediately.

Table 10. Approximate number of tics for one loop

Text Binary Trie TST search| Associative| NET Dic- NET

search search array tionary HashSet
A 31000 340 970 160 290 240
B 46000 500 1300 250 460 390
C 40000 420 1100 200 380 320
D 25000 250 7200 130 230 200
E 30000 320 8800 150 290 240
F 35000 350 1000 170 320 280
X 45000 340 1600 100 110 200
Y 48000 670 1600 200 420 310
z 50000 750 1700 260 430 330

5. Conclusions and future work

We examined six dictionary structures for text gsialin particular for index-
ing text. Tests have shown that the structure basetthe associative array makes
searching faster than other structures. Five strastbut trie utilize similar amount
of RAM memory. For our purpose dedicated associdable is the best choice. If
somebody does not want to implement dedicated teteiclasses from .NET li-
brary are relatively good. However, the trie stmuetand TST are still useful in
tasks such word completion or error correctioneTsivery good choice if we have
limited dictionary, for dictionaries like [8] theelier choice for mentioned tasks is
TST which compromises the advantage of fast conmpleind reasonable RAM
amount. The main conclusion is that our applicasbould be developed based on
associative array but parallel version with trieisture can be useful in special task
like morphology study.

REFERENCES

[1] Bentley J., Sedgewick R., (1998grnary Search TreeDr. Dobbs Journal April,
1998

[2] Cormen, T. H., Leiserson, C. E.; Rivest, R. L.;ist€., (2001),Chapter 11 Hash
Tables, Introduction to Algorithm@&nd ed.), MIT Press and McGraw-Hill

[3] Karwowski W., Wrzeciono P., (201#4utomatic indexer for Polish agricultural texts
Information Systems in Management 2014, Vol. 34,npp. 229-238

235

[4]

[5]

[6]

[7]
(8]
(9]
[10]

[11]

Karwowski W., Wrzeciono P., (201®jethods of automatic topic mining in publica-
tions in agriculture domaininformation Systems in Management 2016, VoB)Ypp
192-202

Karwowski W., Wrzeciono P., (2017)he dictionary structure for effective word
search Information Systems in Management 2017, Vol4§, §. 284-293

Mehlhorn, K., Sanders, P. (2008 hapter 4Hash Tables and Associative Arrays,
Algorithms and Data Structures: The Basic Toolt®gringer

Morphosyntactic dictionary for the Polish languadptps://github.com/morfologik/
Polish language dictionapyhttp://www.sjp.pl
Stempel - Algorithmic Stemmer for Polish Langultyp://getopt.org/stempel/

Weiss D. (2005A Survey of Freely Available Polish Stemmers analuztion of
Their Applicability in Information Retrievalnd Language and Technology Confer-
ence, Pozng Poland, pp. 216-221

Wrzeciono P., Karwowski W. (2013)\utomatic Indexing and Creating Semantic
Networks for Agricultural Science Papers in the iBlolLanguage Computer Soft-
ware and Applications Conference Workshops (COMP@AC013 IEEE 37th An-
nual, Kyoto

236

